Southern dragonflies (Odonata) expanding in Wallonia (South Belgium) : a consequence of global warming?

Philippe Goffart

Displayers.

Centre de Recherche de la Nature, des Forêts et du Bois, MRW/DGRNE (Gembloux) Unité d'Ecologie et de Biogéographie, UCL (Louvain-la-Neuve)

Talk plan

- Introduction
- Facts: observations during the last 2 decades
 - Global view
 - Species cases
- Expansion or sampling' increase?
- Hypotheses:
 - Habitat change?
 - Intrinsic population dynamics?
 - Climate change (t°)?
- Conclusions & recommendations

Introduction

• Climate change

> 6 main predicted (and now partly observed) impacts on life

(Walther et al. 2002, Root et al. 2003, Parmesan & Yohe 2003, Thomas et al. 2004, GIEC 2007)

- Distribution (poleward shifts)
- Phenology, physiology
- Evolutionary responses
- Extinction risk of populations
- Interactions in communities
- Ecosystem structure
- Many evidences on insects, especially butterflies

(Parmesan *et al.*, 1999, Hill *et al.*, 1999, Roy & Sparks, 2000, Warren *et al.* 2001, Thomas *et al.* 2001, Sparks *et al.*, 2005...)

• Dragonflies: numerous chorological observations (Eur, Am..), but few quantitative studies (with link to climate change) (Hickling *et al.* 2005, *in Global Change Biology*)

Facts:

observations during the last 2 decades

Temporal pattern of 7 (former) rare southern species

Facts: observations during the last 2 decades Species cases

Facts:

observations during the last 2 decades

Synthetic data on these (former) rare southern species

Species	Data			I	First reproduction reported			
	before 1980	1981 to 1990	after 1990	Total				
Crocothemis erythraea	yes	6	94	109	1993 (egg-laying, emergences)			
Lestes barbarus	yes	1	41	48	1996 (egg-laying, emergences)			
Sympetrum fonscolombii	yes	2	39	51	1998 (egg-laying, emergences)			
Anax parthenope	no	8	20	28	2000 (egg-laying, >1 year populations)			
Coenagrion scitulum	yes	0	15	23	1999 (egg-laying, >1 year populations)			
Aeshna affinis	yes	1	9	13	1995 (>1 year populations)			
Sympetrum meridionale	yes	0	1	9	2000 (emergence)			
Total (southern spp.)	6 spp.	18	219	237				
Total (all spp.)	(3345)	6436	16956	23392				

Facts:

data distribution during the last decade

Number of these (former) rare southern species by 5 km UTM square

Number of southern species (UTM 5 km)

Total: 7 species

> 3 spp.
2 - 3 spp.
1 spp.

Expansion or sampling' increase?

Data gathered by the Dragonfly Working Group « Gomphus » (based mainly on visual observations)

NB: Old data (< 1981) = collections data, with biased frequencies!

Expansion or sampling' increase?

NB: similar global pattern !

> Corrected data frequencies (rates)!

Spatio-temporal heterogeneity of sampling !!

> Methodology to counter this bias

> Data from 1989 to 2000 (12 years) (Monitoring Scheme)

> Comparisons of two periods: 1989-1994 / 1995-2000

> Selection of grid cells which were sampled at both periods during the main flight period of the species

> G tests (goodness of fit) between p1 & p2 on:

- Number of grid cells with observation(s)
- Observation rate per visit

Trends' results for the 17 southern species known in Wallonia

Species	Grid cell nb > 1989	Sampled grid cell (p1 & p2)	% change (grid cell nb)	Sign. Level	% change (obs. nb)	Sign. Level	Synthesis
Gomphus pulchellus	142	51	0%	ns	22%	ns	\rightarrow
Erythromma viridulum	90	36	61%	ns	70%	**	>
Cercion lindenii	54	21	900%	***	872%	***	
Crocothemis erythraea	40	21	45%	ns	85%		
Lestes barbarus	23	11	350%		861%	***	A 1
Orthetrum brunneum	23	11	-22%	ns	-50%	ns	> ?
Sympetrum fonscolombii	20	9	350%	*	466%	***	
Oxygastra curtisii	16	4	100%	ns	125%	ns	27 ?
Sympecma fusca	16	7	33%	ns	9%	ns	2?
Anax parthenope	11	6	150%	ns	307%	*	
Coenagrion mercuriale	10	3	50%	ns	-32%	ns	⇒?
Coenagrion scitulum	8	1	1000%		1000%		?
Aeshna affinis	4	5	100%	ns	80%	ns	27 ?
Gomphus simillimus	2	1	-100%		-100%		?
Ceriagrion tenellum	1	1	0%	ns	10%	ns	?
Sympetrum meridionale	1	0					?
Onychogomphus uncatus	0	0					?

Trends for 58 species (from 66) in relation to « distribution type »

> Trends of southern spp. significantly differ from those of other groups (Kruskal-Wallis test: p = 0,0016; median tests) NB: northern species globally in decline (- 33%), but unsignificant (median tests)

Leucorrhinia dubia, male

Trends for 59 species (from 66) in relation to « habitat type »

NB: differences non significant ! (Kruskal-Wallis test)

Species enrichment of particular sites (regularly sampled)

> ex: Virelles

1989-1994: **23** spp. per year 1995-2000: **29** spp. per year

Hypotheses 1) Habitat change?

What? eutrophication

Why?

northern spp >> oligotrophic habitats southern spp >> eutrophic habitats

> **Prediction 1 :** southern spp. should be observed on eutrophic waters in Wallonia

Obs: southern spp. were found on diverse kinds of waters (incl. oligotrophic)!

Sandpool in Hainaut

Hypotheses 1) Habitat change ?

> Prediction 2 :

among « eutrophic » species, non-southern ones should expand like southern ones!

<u>Obs</u>: this is not the case!! Non-southern species were stable when southern ones have much increased (median test: p = 0,0004)

Hypotheses 2) Intrinsic population dynamics?

What? increase for unknown reasons, intrinsic to species

> Prediction 1: expansions should not be synchronized between spp.

<u>Obs</u>: it was rather highly synchronized in Wallonia

> Prediction 2: expansions should affect as well northern as southern, or mid-european spp.

<u>Obs</u>: this is not the case here!! (see before)

Hypotheses 3) Climate change (t°)?

What: rise of mean and extreme temperatures and associated events (southern winds)

> Prediction 1: Should affect the majority of southern spp.

<u>Obs</u>: this is the case, here!! (see before)

> Prediction 2:

Should affect them in a rather synchronized way (temporal correlation of expansions)

<u>Obs</u>: this is the case, here!! Migrants waves (see before)

Hypotheses 3) Climate change (t°)?

> Prediction 3:

at the limit of their range, southern spp. should select (develop on) thermically favourable regions and habitats

<u>Obs</u>: this seems to be the case, in Wallonia!!

> mainly in Lorraine, Fagne, Famenne> mainly on sunny and shallow waters

> Prediction 4: should also affect the northern spp. at their limits of range

<u>Obs</u>: this could be the case, here, but it is difficult to ascertain!! (see before)

Conclusions & last comments

Recent expansion of several southern species in Wallonia

Establishment of reproductive populations

 Global warming
 main explaining factor !

Conclusions & last comments

> Is it good news?

Maybe not, because:

Northern species could disappear in our regions...

These changes are very rapid !

Organisms with low mobility and/or highly fragmented habitat network could have problems to follow these changes and find refuges !

Recommendations

- > conservation and restauration of high quality aquatic habitats, especially those of peatbogs, to ensure maintenance of their present fauna
- > development of a better ecological network to allow and favour fauna and flora movements in relation to climate change
- > continuation and reinforcement of biodiversity' survey and monitoring programs in our regions to track range shifts and changes in status

Acknowledgements

Violaine Fichefet, Roland de Schaetzen, Jean-Yves Baugnée, Philippe Lebrun, Marc Dufrêne

Collaborators (about 150) from Gomphus for data collecting

Ministry of Région wallonne (MRW/DGRNE) for funding