## **Climatic differentiation of the alien plant Senecio** inaequidens (Asteraceae) during invasion

When evolutionary phenomena make predictions uncertain...



Gembloux Agricultural University, Belgium



faculté universitaire des sciences agronomiques

# Introduction

## **IPCC 2002 Technical report**

Projected impacts of changes in mean climate and extreme climatic events on terrestrial and marine ecosystems:



INTERGOVERNMENTAL PANEL ON CLIMATE CHANG

CLIMATE CHANGE AND BIODIVERSITY

IPCC Technical Paper V

Changes in phenology are expected to occur in many species »

The general impact of climate change is that the habitats of many species will move poleward or upward from their current locations »









These impacts are forecasted with the global assumption that species remain constant in their climatic optimal requirements.

→ Species 'follow' their abiotic niche...





## But:

**Species are not static entities**: they can potentially develop adaptations in response to a changing environment !



Evolutionary theory might be 'troublesome' when trying to forecast global warming impacts !









In the present study, we address the following questions:

 $\rightarrow$  Can plant populations develop adaptative differentiations in relation to climate (*e.g.* temperature) ?

 $\rightarrow$  Is the timescale of this potential differentiation compatible with that of global warming?

Plant invasions are an opportunity to study these questions at a large biogeographical scale

## Material & Methods

#### Senecio inaequidens DC. (Asteraceae):

- Perrenial herbaceous shrub from South Africa and Lesotho
- Numerous yellow capitulae; mostly self-incompatible; tetraploid
- Long flowering period (6 months)
- Pioneer species, invading mainly roadsides and railways



## Invasion History :

- The species was introduced to Europe as a wool alien in several locations linked to wool industries:
  - Verviers (Belgium) : 1892
  - Bremen (Germany) : 1896
  - Mazamet (France) : 1936
  - Verona (Italy) : >1940



Invasion History :

• During several decades, it was only found in the vicinity of wool processing areas



Invasion History :

- From 1950-1970, it started to spread throughout Europe, it **climatic contrasted zones...** 
  - During ~ 50 years, Senecio encountered increasing and decreasing temperatures during invasion, while colonizing different altitudinal zones !





#### - Temperature gradient +



## Senecio invasion



#### - Temperature gradient +



## Senecio invasion



#### - Temperature gradient +

## Senecio invasion







#### - Temperature gradient +

## Adaptation ?



#### - Temperature gradient +

#### Adaptation ?



Seeds collection and population characterization along altitudinal gradients

## **French transect:**

- •5 altitudinal-climatic zones x 2 populations x 10 individuals
- Temperature and summer drought gradient
- Mean annual T° : 16.1 to 6.3 °C
- Downward invasions: + 3.4°C
- Upward invasions : 6.4°C



Seeds collection and population characterization along altitudinal gradients

## **Belgian transect:**

- 4 altitudinal-climatic zones x 2 populations x 10 individuals
- Temperature and rainfall gradient
- Mean annual T° 9.6 to 5.7 °C



## In situ population characterization



individuals

#### MEASUREMENTS:

- Plant height
- Plant volume
- Plant above-ground biomass

## Seed collection and elimination of intra-maternal effects



## Sowing and measurements

## 10 biggest achenes without anomaly





#### 1 plant was kept



One plant per parent individual

Germination study (n = 2400) Phenology and growth study (n = 240)

## Sowing and measurements

## 10 biggest achenes without anomaly





MEASUREMENTS:

• Germination delay

#### 1 plant was kept



One plant per parent individual

- Flowering delay (since germination)
- Height at first flowering
- Final height
- Final above-ground biomass
- Reproductive allocation

## Common garden experiment: *randomized bloc design*



## Statistical analysis

For each transect separetely:

Comparisons of transect zones 

ANOVAs

Linear correlation

Population trait means vs Altitude

## **Main results**

## French transect


- Plant height
- Plant volume
- Above-ground biomass



• Plant height





Significant differences between transect zones (ANOVA)

- Plant height
- Plant volume
- Above-ground biomass





In the field, plants from lower elevations grow larger

- Germination delay
- Flowering delay (since germination)
- Height at first flowering
- Final height
- Final above-ground biomass
- Reproductive allocation



- Germination delay
- Flowering delay (since germination)



- Final above-ground biomass
- Reproductive allocation

Significant differences between transect zones (ANOVA)



- Germination delay
- Flowering delay (since germination)
- Height at first flowering
- Final height
- Final above-ground biomass
- Reproductive allocation



- Germination delay
- Flowering delay (since germination)
- Height at first flowering
- Final height
- Final above-ground biomass
- Reproductive allocation

Significant decrease with altitude, (especially along downward invasion)





• Germination delay

- Flowering delay (since germination)
- Height at first flowering
- Final height
- Final above-ground biomass
- Reproductive allocation

# Significant **increase** with altitude, along **downward invasion** only





• Germination delay

- Flowering delay (since germination)
- Height at first flowering
- Final height
- Final above-ground biomass
- Reproductive allocation

Significant **increase** with altitude, along **downward invasion** only

In the common garden, plants from lower elevations tend to germinate earlier, grow larger and allocate more ressources to growth than to reproduction



### **Belgian transect**





Same altitudinal pattern for growth traits in the common garden... whereas less marked !

## Conclusion

This study reports a species differentiation in relation to a spatial climatic variation... what about a temporal climatic variation (global warming)?

Plants from lower elevations tend to germinate earlier, to bloom at a greater age and to allocate more ressources to growth (Changes in germination, phenology and growth allocation!)

Differentiation was steeper while the species encountered an increase in temperature (downward invasion)

 $\rightarrow$  The differentiation is most likely adaptative for:

- Typical clinal variation
- Same pattern along both independent gradients

Adaptative differentiations took place in a timescale of less than one century... → Other studies reported adaptative differentiation in relation to climate for invasive species (Tamarix sp.; Solidago spp.; Impatiens glandulifera)



→ Other studies reported adaptative differentiation in relation to climate for invasive species (*Tamarix* sp.; *Solidago* spp.; *Impatiens* glandulifera)

➔ In this point of view, global warming can force evolution of species...

But are all species able to adapt ?

If not, global warming would favour some species (*e.g.* **invasive species**) through diversification while disadvantaging others!



## **Take-home messages:**

→ Species are not static entities: increasing research suggests that adaptations (*e.g.* in relation to a changing climate) can appear faster than previously thought.

This makes species distribution models even more uncertain: need to quantify the differentiation to include it in models...

Global warming can force the irreversible differentiation of species. In the case of alien invasive species, a great adaptation potential is likely to induce a positive reaction to global warming...

### **Thank You**

This research was supported by the project FRFC 2.4605.06 from the FONDS NATIONAL DE LA RECHERCHE SCIENTIFIQUE.

Laboratory of Ecology Gembloux Agricultural University, Belgium



gembloux faculté universitaire des sciences agronomiques

