Belgian Biodiversity Platform
Contents

Introduction p.5
Background, the natural relation between biodiversity and public health p.6-10
Scientific Advisory Committee p.11
Keynote speakers p.12-15
Workshops p.16-32
Workshop 'Vector-borne diseases, diversity and public health' p.18-20
Workshop 'Spatial tools for studying environment and health' p.21-23
Workshop 'Biodiversity and Food' p.24-27
Workshop 'Nature experience and the Question of Health' p.28-29
Workshop 'Public health as an ecosystem service indicator' p.30-32
Panel discussion and closure of the conference p.33
Posters p.34-43
Participants Evaluation p.44-49
Follow-up p.50
Policy Brief p.51-53
Photos p.54
Appendices: Programme and Participants list p.55-57
References p.58-61

Introduction

Biodiversity and Public Health is an emerging field of interest in Belgium. In this context, the Belgian Biodiversity Platform organized the first Belgian Biodiversity and Public Health conference on November 30th 2011 in Brussels. The goals of the conference were to:

- Raise scientific and policy attention for the relation between Biodiversity and Public Health in Belgium
- Stimulate networking amongst experts and discuss how the knowledge base can be improved
- Contribute to building a Belgian Community of Practice regarding Biodiversity and Public Health

81 Belgian experts participated, among which:
- 68% were scientists (universities and governmental scientific institutes; health, ecological and social science)
- 16% represented policy interests (Federal, regions, provinces, cities; health, environmental, nature and land planning policy)
- Others: consultants (policy advice, eco-therapy, education), NGOs (nature protection, landscape development, ecological life and gardening, health insurance), media

This report contains an explanation of the relation between Biodiversity and Public Health and a presentation of the most important outcomes of the conference.
Background
The natural relation between biodiversity and public health

According to McMichael (2009), “Human population health should be the central criterion, and is the best long-term indicator, of how we are managing the natural environment”. The plea for human health as a sustainability indicator exemplifies the strategic importance of human health both in terms of ecosystem services and biodiversity conservation. The relationships between biodiversity and public health (see figure 1) are manifold (WHO 2006; Chivian and Bernstein 2008; Sala et al. 2009; European Commission 2011a; COHAB; Wittmer et al. 2012).

Diseases
The contribution of biodiversity to the control of the increasing threat of infectious diseases (e.g. malaria and Dengue fever in tropical regions, Leishmaniasis in tropical Americas, Europe and the Middle East, and Hantavirus, Lyme and other tick-borne diseases in North America and Europe) is of utmost interest in terms of public health and cost to society (WHO 2006; Chivian and Bernstein 2008; Molyneux et al. 2008; Thomas et al. 2009; Keesing et al. 2010). Infectious diseases are caused and spread by living organisms and as such exemplify biodiversity: diversity in pathogens and parasites (causing disease), hosts (organisms harbouring pathogens and parasites) and vectors (organisms carrying and transmitting the infection, e.g. malaria mosquitoes). On the other hand, a decline of biodiversity might lead to a faster rate of emergence and re-emergence of infectious diseases and may reduce the buffer function of biodiversity limiting the spread of infectious diseases amongst humans (Peixoto and Abramson 2006; Suzan et al. 2008; Pongsiri et al. 2009; Keesing et al. 2010). Finally recent studies show that declining biodiversity may be a contributing factor to the rapidly increasing prevalence of allergies and other chronic inflammatory diseases among urban populations worldwide (Hanski I. et al. 2012). Biodiversity thus can have an important contribution to both public health related ecosystem services and disservices.

Quality of food, air and water
Biodiversity is functional for safeguarding the quality of essential life support systems: food, air and water. The relation between biodiversity and food quality is reciprocal: healthy food depends on biodiversity, and biodiversity depends on how humans organize food production (Wilby A. et al. 2009). Biodiversity influences the quality especially by providing a variety of food sources, supporting a diverse diet which is essential for human health (Wilby A. et al. 2009; Hillel and Rosenzweig 2008). Genetic food diversity also functions as an insurance: when an important food source comes under pressure due to e.g. climate change or infections, food diversity may provide alternatives. The latter clearly is not the case with mono-agriculture. Genetically diverse forms of agriculture furthermore show to be less vulnerable to diseases. Genetic diversity moreover functions as a biotechnological resource for e.g. crop improvement. Intensification of food production by use of e.g. pesticides both endangers biodiversity and human health. Still, worldwide population growth demands increased food productivity. To provide sufficient and healthy food in a sustainable manner will be a huge challenge. The role of and effects for biodiversity demand careful consideration. Specific aspects of biodiversity functional for food production are pollinator biodiversity and soil biodiversity (Hillel and Rosenzweig 2008). The role of pollinators for food production cannot be underestimated, and is very sensitive to biodiversity decline. Soil biodiversity is important e.g. for maintenance of soil fertility, water storage, carbon storage. Moreover is soil diversity important for air and water purification by means of pollutant degradation, which are also important human health related ecosystem functions (Melillo and Sala 2008).
Background
The natural relation between biodiversity and public health

Medicine
Biodiversity is an important resource for medicine, both traditional and modern, both today and in the future (Newman et al. 2008; Chivian et al. 2008; Cox 2009; Chivian and Bernstein 2008b). A large part of chemically designed and produced medicines have natural origins and especially people in less developed areas heavily depend on medicines directly coming from nature (Newman et al. 2008; Cox 2009). Examples are quinine for malaria and pilocarpine for glaucoma. We have to realize that only a small proportion of species are analyzed for their medicinal potential. As species are lost at a very rapid rate, so is the potential for future medicine. The same unfortunately is true for traditional or indigenous knowledge regarding natural medicines. It is not only plants that potentially contribute to medicine; the potential contribution of animal species should not be underestimated (Chivian and Bernstein 2008b). A few examples: Osteoporosis prevention and treatment may benefit from further understanding of how denning bears do not seem to suffer from physical non activity over a longer period, that for other mammals (including humans) results in bone-loss. Cone snail peptides, used by the animals to defend themselves or paralyze their prey, can be very effective for chronic pain treatment amongst humans. Squalamine, found in sharks, is being investigated for its potential anti-tumour activity. The blood of horseshoe crabs is capable of killing bacteria; the study of the working of these antimicrobial peptides can be beneficial to designing more effective antibiotic therapies for humans.

Nature experience
The natural relation between biodiversity and human health perhaps best is brought to life in the biophilia hypothesis: the innate human tendency to affiliate with nature (Kellert 2009; Hartig et al. 2011; Mellilo and Sala 2008; Nilsson et al. 2011). This contact with nature both has historical biological (genetically programmed) roots and present day beneficial health effects: studies show that living near nature enhances health, contact with nature is beneficial to recovery from illness or stress, it stimulates social ties and physical activity, nature elements are beneficial to productivity in working conditions, contact with nature stimulates intellectual performance and positively influences children’s development (Kellert 2009). The complicatedness and sensitivity of the relation also is coined by the concept of biophobia (Ulrich 1993; Hartig et al. 2011): the relation is not necessarily (only) positive, neither historically nor in current perception and policies. Fear of dangers in nature (predators, snakes, poisonous plants) historically was functional for survival, alongside with positive cues such as potential food and water sources, shelter. Both illuminating human adaptive capabilities (Ulrich 1993). The relation also shows its dual face in the historical development of public health policies: especially in Western countries in the twentieth century the positive aspects of nature to human health have been mainly discarded. In cities the hygiene principle overshadowed the positive nature experience principle. The idea of coexistence of humans with nature being beneficial to human health slowly seems to be revitalized in current public health thinking. The special role of biodiversity in nature experience literally is both mysterious and complex: the quality of nature is of influence on the fruits of nature experience to human health (Kaplan and Kaplan 1989; Hartig et al. 2011).

Invasive species and diseases
Global travel, transport and trade have resulted in the introduction of new species to local ecosystems. Most introduced species do not cause problems in their new surroundings, but some of them become invasive and as such disruptive to ecosystems (Chivian and Bernstein 2008b). Invasive species may result in biodiversity decline and the success of an invasion may be the result of lack of biodiversity in the invaded habitat. The impact of invasive biological species on a diversity of the above mentioned human health related ecosystem services (and disservices) has become of increasing importance the past decades (Pysek 2011). Invasive species may introduce diseases to other habitats, often leading to dramatic emergence of infectious diseases (Thomas et al. 2009), and may cause injuries or allergies. They may accumulate toxins (e.g. heavy metals) which may end up in human food and may contaminate soil or water. And they may hamper nature experience e.g. by forming impenetrable stands or water coverage, or causing deterioration of environmental and aesthetic quality of ecosystems (Pysek 2011).

Catastrophe control and climate change
Biodiversity and ecosystems can be functional in catastrophe control, e.g. in lowering the risk of floods (Mellilo and Sala 2008) and droughts (Chivian and Bernstein 2008b) and as such decrease related public health risks. Climate change plays an important role here and does so also in relation to other of the above mentioned human health related ecosystem services (and disservices). Floods may result in water born diseases and droughts result in malnutrition (Parmesan and Martens 2009). Climate change can have an effect on infectious diseases (Molyneux et al. 2008). E.g. due to climate warming in coastal ecosystems the spread of cholera can be enhanced. Moreover some vectors are sensitive to temperature: due to climate warming the spread of mosquitoes and their activity may be enhanced, and so may the spread of diseases like malaria. Extreme weather events such as heavy rainfall, flooding and droughts may both increase and decrease the activities of vectors. E.g. droughts may lead to the formation of small nutrient rich pools favourable to mosquitoes spreading the West Nile virus (Molyneux et al. 2008). According to Parmesan and Martens (2009), the tripartite relation climate change – biodiversity – human health due to complexity still is poorly understood. Existing studies illuminate the importance of monitoring and generation of further understanding.
Background
The natural relation between biodiversity and public health

Biodiversity and Public Health in Belgium
Research on the linkages between biodiversity and public health is an emerging issue that nevertheless has not yet received much concerted attention in Belgium. Considering that the issue attracts the interest of various scientific disciplines, including biodiversity, public health and social sciences, an interdisciplinary approach is called for. Promoting new linkages and collaboration amongst these disciplines, to propose appropriate new research ideas and topics is of priority interest. The expertise arising from such interdisciplinary research potentially has substantial added value for policy making. This will e.g. allow Belgium to live up to the Belgium Biodiversity Strategic aim of maximising the advantages for human health arising from biodiversity and expand the collaboration between the interested organisations/ public services. Health is also one of the priority societal challenges identified in the European “Horizon 2020” strategy (European Commission 2011b) for research and innovation. To promote the integration of such expertise into relevant policy at different levels, moreover a transdisciplinary approach is called for to ascertain the involvement of relevant stakeholders from different sectors of society in the development of a research agenda and projects.

In the organisation of the conference, the Belgian Biodiversity Platform was assisted by a Scientific Advisory Committee (SAC). This committee was composed of Belgian and international experts from both science and policy fields with an interest in Biodiversity and Public Health. The role of the members of the SAC was to advise on the best approaches that would ensure a successful meeting. The SAC was led by Hans Keune, Science Officer for the Belgian Biodiversity Platform.

Members of the SAC:

Bauler Tom - Institute for Environmental Management and Land-use Planning, Université libre de Bruxelles
Biot Pierre - Federal Public Service (FPS) Health, Food Chain Safety and Environment
Coosemans Marc - Institute of Tropical Medicine, University of Antwerp
Gilbert Marius - Biological control and Spatial Ecology Lab, Université libre de Bruxelles
Flandroy Lucette - Federal Public Service (FPS) Health, Food Chain Safety and Environment
Heyman Paul - Military hospital Belgium
Huyse Tine - Laboratory of Animal Diversity and Systematics, K.U.Leuven
Leirs Herwig - Department of Biology, University of Antwerp
Loots Ilse - Flemish Centre of expertise on Environment and Health, University of Antwerp
Mathijs Erik - Division of Agricultural and Food Economics, K.U.Leuven
Martens Pim - International Centre for Integrated assessment and Sustainable Development (ICIS), Maastricht University, The Netherlands
Navez Yseult - Federal Public Service (FPS) Health, Food Chain Safety and Environment
Nemery Ben - Flemish Centre of expertise on Environment and Health, Faculty of Medicine, K.U.Leuven
Peeters Alain - RHEA
Prieur-Richard Anne-Hélène, Diversitas
Symoens François - Reference Centre in Medical Mycology, Scientific Institute of Public Health
Tack Wesley - Research Group Forest and water management, Faculty of Bioscience Engineering, Ghent University
Vander Aa Beatrice - Research Institute for Nature and Forest (INBO)
Van Helden Jacques - Genome and Network Bioinformatics, Université libre de Bruxelles
Van Herzele Ann - Research Institute for Nature and Forest (INBO)
Van Ranst Marc - Faculty of Medicine, K.U.Leuven
Vanwambeke Sophie - Department of geography, Université catholique de Louvain
Verhekke Jan - Belgian Federal Council for Sustainable Development, Secretary of the Flemish Advisory Council for Environment, Nature and energy
Volckaert Filip - Laboratory of Animal Diversity and Systematics, K.U.Leuven
Wittmer Heidi – Helmholtz Centre for Environmental Research (UFZ), Germany

Hans Keune, supervisor of the conference

Belgium’s National Biodiversity Strategy 2006-2016
Keynote speakers

Full presentations of the keynote speakers, both the power points and video recordings can be found on the conference website. The following pages introduce the background of the keynote speakers and a brief introduction to their presentations.

Conor Kretsch
Conor Kretsch is executive director of Co-operation on Health and Biodiversity (COHAB). COHAB is a community of individuals and organisations working together to address the gaps in awareness, policy and action on the links between biodiversity and human health and well-being. The initiative supports efforts to enhance human security through the conservation and sustainable use of biodiversity and the goods and services it provides. COHAB provides a platform for dialogue, promoting understanding and experience sharing, and working to build partnerships across sectors and cultural divides.

In his presentation ‘Reducing Risks - Linking Health and Biodiversity in Policy and Practice’, Conor Kretsch first introduced the concepts of biodiversity and human health, the latter subdivided in a diversity of health aspects. He also highlighted the relations between biodiversity and human health and introduced several international initiatives, such as the Millennium Ecosystem Assessment, that assessed this important relation. Furthermore he sketched the policy challenges connected to these efforts, as well as the need of close collaboration between health and environmental/ecological experts.

Terry Hartig
Terry Hartig is Professor of Environmental Psychology at the Institute for Housing and Urban Research and Department of Psychology of Uppsala University Sweden. The focus of his research is on daily places that most people care about: home, neighbourhood and natural settings such as forests. For instance, he has compared the emotional, cognitive and physiological changes measured in young adults who walked in either a nature preserved area or urban settings after they faced a standard set of demands. With such studies, Terry Hartig tests current theories about how environments may promote or constrain restoration. In other field works, he contributed to theory development in different ways, situating brief restorative experiences in the on-going flow of activity over the days, weeks and years, and relating the use of natural environments for restoration to the performance of behaviour that in turn serves to protect the natural environment. The fundamental intent in all of these efforts is to inform environmental and policy measures that promote health.

In his presentation ‘Linking Health with Nature Experience: Restoration and Other Pathways’ Terry Hartig presented results of psychological research illustrating the importance of Nature experience for stress reduction and management of cognitive resources, how it stimulates social ties and physical activity, and how it supports development over the lifespan. He concluded with the intriguing dilemma that on the one hand restorative experiences in nature can help to support efforts to preserve biodiversity. But on the other hand, the desire for restoration in nature may also hinder efforts to preserve biodiversity.

http://www.cohabnet.org
Keynote speakers

Marc Van Ranst

Marc Van Ranst is full professor at the Faculty of Medicine of KU Leuven and head of the Department of Microbiology & Immunology of the KU Leuven. Since May 2007, he has been appointed as Belgian Interministerial Commissioner for flu epidemics. He is also member of the Superior Health Council of Belgium.

In his presentation ‘Zoonotic infections’ Marc Van Ranst introduced the audience to the intriguing and dynamic world of zoonotic infections. This type of infections form the major part of pathogens that emerge in humans, which moreover is further enhanced by the way we organize our modern and globalized way of living. For example in the way we organize animal meat production, the intensity of global trade and global travel. He also presented other factors to be taken into account, such as climate change and ecological change. Furthermore he gave an overview of influenza epidemics, of which the Mexican flu is the most recent example causing international unrest. Finally he introduced developments of the hantavirus worldwide and presented results from research on the hantavirus in Belgium.

Pim Martens

Pim Martens holds the chair ‘Global Dynamics and Sustainable Development’ at Maastricht (Netherlands) and Leuphana (Germany) University, and is a honorary professor at Stellenbosch University, South Africa. He is also Director of the International Centre for Integrated assessment and Sustainable development (ICIS) and the Academic Director of the Maastricht University Graduate School of Sustainability Science (MUST), Maastricht University. Prof. Martens is project-leader and principal investigator of several projects related to sustainable development and sustainability science, globalisation, environmental change and society. Pim Martens is editorial advisor of the International Journal Ecohealth, associate editor of Environmental Science and Policy, and member of several editorial boards.

In his presentation ‘Biodiversity and Health - Friends or Foes?’ Pim Martens presented many examples of the importance of the relation between biodiversity, sustainability and human health. He also highlighted the scientific challenges regarding these issues, the vast amount of scientific uncertainties and the gap between different paradigms of epidemiology: conventional epidemiology and eco-epidemiology.
Workshops and panel discussions
The Scientific Advisory Committee selected five topical workshops. This selection was based on an assessment of the relevance to the conference aims and topical focus, and on the scientific quality of the workshop proposals. The selected workshops were set up by ‘Workshop organisers’, who were advised by the SAC on technical and scientific issues, and were asked to address issues specifically relevant to the Belgian perspective and policy relevance.

Workshop Vector-borne diseases, diversity and public health
Organizers: Guy Hendrickx (Avia-GIS), Marc Coosemans (ITM), Katrien Tersago (UA), Veerle Versteirt (IMT), Etienne Thiry (ULg)
In the infectious diseases workshop the focus was on vector-borne diseases, their diversity and their potential impact on public health. Recent results from a series of international research projects involving Belgian scientists were presented, highlighting different facets of the diversity of vector-borne diseases: the relationship between masting, rodent population dynamics and the incidence of hanta virus; mapping mosquito diversity in Belgium and The Netherlands; ongoing work on a novel ‘One-Stop-Shop’ system and service to assist with mapping and modelling vectors of disease; the risk of emergence of viral diseases driven by eco-climatic changes and socio-economical situations.

Workshop Spatial tools for studying environment and health
Organizers: Sophie Vanwambeke (UCL), Eli Ducheyne (Avia-GIS), Marius Gilbert (Lubies, ULB)
The spatial tools workshop presented spatial approaches to investigate relationships between environment and health, that could be particularly useful for the understanding of vector-borne and zoonotic diseases. The presented case studies covered various disease transmission systems such as tick-borne diseases and culicoides-borne diseases. The case studies illustrated challenges encountered when using spatial methods, as well as the value and necessity to approach these questions in a multidisciplinary framework.

Workshop Biodiversity and food
Organizer: Erik Mathijs (K.U.Leuven)
The Biodiversity and food workshop focussed on the crucial role of biodiversity in the development of agriculture and food production. Wild species may still provide genes increasing crop or food quality. Moreover both malnutrition and over nutrition are related to a lack of diversity in food intake.

Workshop Nature experience and the Question of Health
Organizer: Ilse Simoens (INBO)
The automatisation, urbanisation and globalisation of our society strongly reduce nature related daily practices. This results in a society disconnected from the surrounding landscape and local food production. Nowadays, experience of nature has become an activity on its own, performed during our free time, based on individual choices and trends and with little relation to the landscape in which it takes place. Lots of studies of different disciplinary orientation show that our society suffers from an increasing number of burn-outs, depressions, identity crises, obesity, back problems and attention deficit hyperactivity disorder in children. The nature experience workshop focused on how the benefits of nature experience activities could help to decrease these problems.

Workshop Public health as an ecosystem service indicator
Organizers: Hans Keune (BBPF), Heidi Wittmer (UFZ), Tom Bauler (ULB)
According to McMichael (2009), “Human population health should be the central criterion, and is the best long-term indicator, of how we are managing the natural environment”. The plea for human health as a sustainability indicator exemplifies the strategic importance of human health both in terms of ecosystem services and biodiversity conservation: public health benefits from biodiversity, and in exemplifying these benefits, biodiversity conservation may be enhanced. The ecosystem services workshop addressed the question of how the relation between biodiversity and public health can be expressed in terms of ecosystem services: what are useful indicators of the value of biodiversity for public health and how is the value of biodiversity for public health best expressed in order to be taken into account in public debate and policy making?
Before starting the discussions, participants in the workshop ‘Vector-borne diseases, diversity and public health’ listened to four presentations:

PRESENTATION 1: Puumala hantavirus epidemiology in Belgium: Impact of tree seed production and climate
By Katrien Tersago, Herwig Leirs, et al. (Evolutionary Ecology Group, University of Antwerp)

The bank vole (Myodes glareolus, Nl: Rosse woelmuis / Fr: Campagnol roussâtre) acts as a vector for the Hantavirus Puumala virus (PUUV). The number of new human infections is a function of the number of reservoir hosts, the virulence and longevity of the virus in the environment and the number of susceptible humans. Given the observation that the bank vole populations increase following years of higher resource availability (high tree seed production; mast years) and the coincidence of higher population densities with epidemic years, early warning systems could be based on models that predict the masting of oak and beech trees. The early warning model presented takes into account the occurrence of dry and warm summers (bud initiation in year-2) and the absence of late frost and little rain during pollination (flowering in spring year-1). The model has a high predictive power, but doesn't clearly explain the high infection rates in recent years and isn't optimized for taking into account spatial variation in masting. This could be related to availability of alternative food sources for the vector species. The presence of other rodent species (including Wood mice) could lead to a dilution effect as these species may compete for food resources but do not act as reservoir for the virus.

This research is clearly an important step towards an early warning system for Belgium. Scientific studies focusing on different pathways for infections could improve such early warning system. This study clearly explain the high infection rates in recent years and isn't optimized for taking into account spatial variation in masting. This could be related to availability of alternative food sources for the vector species. The presence of other rodent species (including Wood mice) could lead to a dilution effect as these species may compete for food resources but do not act as reservoir for the virus.

PRESENTATION 2: Mapping mosquito diversity in Belgium and The Netherlands
By Veerle Versteirt (Institute of Tropical Medicine)

During the Modirisk project an extensive sampling campaign was set up to make an inventory of mosquito species in Belgium (900 random sites and risk areas) and The Netherlands (60 regular sampling sites). This allowed to detect exotic species which could act as potential disease vectors. Two Aedes species were detected in Belgium; A. japonicus, which is still restricted to imported tyre companies and A. koreicus, which appears to be established but not yet invasive. The detection of these potential vector species is relevant for policy-makers. There is a need for surveillance and rapid detection, for clear and uniform eradication protocol (who and what?) and for follow-up and continuation of this kind of studies. In addition, the vectorial capacity of these species is the most important question in this type of research.

PRESENTATION 3: Risk Of Emergence Of Viral Diseases Driven By Eco-Climatic Changes And Socio-Economical Situations – Results of the VIRORISK (Belspo SSD Spin-off) project
By Etienne Thiry (Université de Liège)

Etienne Thiry presented the case of bluetongue virus that made an outbreak in 2006 in ruminant populations. He drew a comparison with what would happen with a similar human infection and a similar type of vector (for Bluetongue the vectors are cuc- cides (Diptera: Ceratopogonidae). This bluetongue virus had not been known in Northern latitudes and the outbreak was a surprise, it is likely this situation could happen for human virus as well. The climatic conditions and their impact on bluetongue out- break were not demonstrated in the introduction of the virus but their role was effective in the maintenance of the infection. The eradication of the bluetongue epidemic was performed thanks to:
- vaccination
- natural immunisation
- natural decrease due to external conditions
In this epidemic, the importance of early detection is critical. There is currently not any early warning system in Belgium. The bluetongue outbreak was noticed and communicated through informal contacts.

PRESENTATION 4 VecMap - A One-Stop-Shop for Vector Mapping
By Guy Hendrickx (Avia-GIS)

VecMap is a product covering the whole process of vector mapping going from designing sampling strategies and obtaining relevant earth observation products to species and diversity modelling. Potential customers include academics, health professionals and commercial users. They can choose to use only selected functionalities (e.g. centralized database system) or opt for a full service package. As a use case, this tool was developed and extensively tested during the Modirisk project. The VecMap tool offers interesting possibilities for continued monitoring in a cost efficient way (it is possible to cal- culate the minimum requirements to maintain/update the database) and offers scientists a standardized tool enabling them to focus on data analysis.
Workshop: Spatial tools for studying environment and health

Outcomes of the workshop on Vector-borne diseases, diversity and public health:

Research topics relevant for biodiversity:
- The distribution and abundance of reservoir and host species
- The influence of host diversity on disease transmission
- The diversity of pathogens and their geographical distribution patterns
- The biological relationship between all actors of disease lifecycles and how the diversity of resources (e.g. food) influences epidemiological cycles
- Which components can act as early warning indicators
- The vectorial capacity of disease vectors in their natural environment

The workshop stressed the need for more collaboration between Belgian research teams working on similar topics. The workshop also highlighted the need to collaborate between different policy sectors. For instance, since vector-borne diseases are very much affected by human induced landscape changes (e.g. creating new wetlands) it is essential that landscape management authorities exchange about this with public health agencies.

Disease Early Warning Systems:
- Look for pathogens
- Under detected diseases
- Diseases occurring in neighbouring regions: it would be useful to have a list of all zoonosis diseases present in neighbouring countries and establish their level of risk to prioritise the surveillance systems. Such prioritisation has been done at different levels in Europe, in several countries. Belgium could learn from these experiences.
- Diseases which may be introduced: e.g. bluetongue
- Syndrome surveillance should focus on symptom clusters or unexplained mortalities:
 - Veterinary
 - Public health
- Link both, taking into consideration simplification of the links between federal, regional and community institutions: a major challenge is to deal with a federal surveillance system and a regional legal framework for the notification of the infectious level.
- Epidemiologic intelligence: e.g. ECDC, FAO

Eradication of invasive species:
- As soon as species are detected and before the invasive stage
- The need for a simplified action plan.

Before starting the discussions, participants in the workshop ‘Spatial tools for studying environment and health’ listened to three presentations:

PRESENTATION 1: “Intensification of poultry production and avian influenza: what are the spatial evidence linking biodiversity and disease emergence?”
By Marius Gilbert (Lubies, ULB)

Marius Gilbert, using the example of avian influenza and poultry farming, contrasted the diversity found among livestock and wildlife, two groups that are found in very different densities. He showed how the process of intensification of farming led to such contrast, and how overlap between the two populations was also an important element of the risk of disease. He indicated that biodiversity in livestock breeds was being sought now in an effort to limit disease risk. He highlighted factors operating at various scales (farm, landscape, etc.), and also the interaction between land uses/land covers.

PRESENTATION 2: “Spatio-temporal modelling of an emerging disease: bluetongue”
By Els Ducheyne (Avia-GIS)

Els Ducheyne presented advanced modelling methods that have helped understand the spread of various bluetongue strains throughout Europe. The use of biomes to understand invasions was highlighted. The role of the models elaborated respectively for retrospective understanding and predictions was illustrated. Her presentation illustrated also the fact that health-related issues can become highly relevant literally overnight. The role of interfaces was also underlined.

PRESENTATION 3: “Spatial heterogeneity of disease risk: humans, vectors and the landscape”
By Sophie Vanwambeke (Georges Lemaître Centre for Earth & Climate Research, UCL)

Sophie Vanwambeke presented the general approach to investigate landscape and the risk of vector-borne disease in a spatially explicit context. This was illustrated by an empirical study of tick-borne encephalitis in Latvia highlighting the many facets of landscape (land cover, land use, land management) and a study of risk of dengue transmission using empirical data and a mechanistic approach.
Workshop: Spatial tools for studying environment and health

Outcomes of the workshop on Spatial tools for studying environment and health:

Main issues relevant for Belgium:

- Data issue: while a lot of data is collected and produced in Belgium, little is actually easily accessible, including for research purposes. This is also the case for health data. For spatially explicit research, a good level of resolution is required. Such detailed data is currently not available. Work is ongoing in that regard but further efforts are necessary.

- There is a need for high resolution data freely accessible in non-crisis/peacetime situation:
 - Geo-referenced health data is coarse-scale which limits the analyses of the disease systems
 - Accessibility to detailed health data is required
 - There are existing initiatives that should be further developed: e.g.: www.data.gov.be, that has started, though data sets are rather limited at the moment
 - Data sharing becomes even more difficult when disease crises are ongoing - e.g. bovine TB UK, avian influenza
 - Baseline biodiversity maps based on ‘Biological Valuation map’ in combination with species distribution maps are not available
 - Need to integrate data from outside academic world such as www.waarnemingen.be

- Scale issue of most problems pertaining to health and the environment:
 - Scale issues often are problematic at a local scale (e.g. water pollution), while many influencing factors (e.g. policy decisions, source points, etc.) depend on a higher level of decision, such as the regional, national or international levels. And as far as Belgium is concerned, the competencies of each authority have to be taken into account (e.g. environment is a regional competence while health partly is a federal competence).
 - Different regions produce different maps in Belgium
 - Issues must be integrated within EU context (problems do not ‘stop’ at the border)

- Communication between scientists, stakeholders and decision-makers:
 - A good communication between these actors is perceived as a challenge, but success stories of integration of various groups or of major translation efforts were mentioned in the discussion.
 - The necessity to involve bureaucrats from local levels (as the main interlocutor to private managers, for example) was underlined.
 - Current translations of science output by ‘multiplier’ to politicians and general public:
 - The Economics of Ecosystems and Biodiversity (TEEB)
 - The Vlaams Instituut voor Zee (Flemish Marine Institute)
 - Belgian NGOs acting as knowledge transfer on biodiversity: Natuurpunt, Natagora
 - Flemish Forest Groups (they should include health impacts of forest management decisions)
 - The Walloon observatory of forests health “Observatoire de la Santé des Forêts” (the observatory should create working partnerships with private forest owners).

The nature of the link between biodiversity and health:

Belgian territory is intensively managed by authorities. Interfaces between ecosystems, and between humans, livestock, and wildlife are very important, including in spatial terms. It means that biodiversity levels are to a large extent “in our hands”, but also that numerous confounding factors exist. However, biodiversity management or even more largely actions for the environment rarely examine consequences on health (whether they would be positive or negative).

What is the relationship between biodiversity and health in Belgium?

- The ecosystem is moving towards a balance (nitrate, ammonia) the gradient between urban -> natural will give impact on direct and indirect health
- The interface between human/domestic animals and wildlife must be further investigated
- Switch towards corridor conservation
- Land management is very high in Belgium
- Switch towards corridor conservation
- Research is needed for relationship between climate neutral cities related to health
- Limited data
Before starting the discussions, participants in the workshop ‘Biodiversity and Food’ listened to three presentations:

PRESENTATION 1: Biodiversity, ethnobotany and new (fruit) crop development
Patrick Van Damme (UGent)

The presentation explained how we can learn more about food species and highlighted the role and importance of ethnobotany in doing so, with a special focus on tropical agriculture. Biodiversity is a direct source of food, medicine, basic need fulfilment, and also provides quite some other ecosystem services. In ethnobotany, there is also a focus on non-material benefits, which are linked to cultural values and aesthetics. These are of interest when we want to recover species for using them. The speed at which species are disappearing is much faster than before. Ethnobotanists are trying to keep abreast of still existing species but many of them were unknown to ethnobotanists even before they disappeared.

Ethnobotanists are mainly dealing with plants. An overview of food plants:
- 2,700,000 higher plants (total: 1 to 2 million)
- 7,000 ever used as a source of food somewhere
- Only 20 major ones are for food
- Only 3-maize, wheat and rice-make up 60% of our basic food/energy

A reduction of the number of species we are using can be observed. All systems are under pressure of replacing local landraces, higher yielding, exotic varieties, introduction of commercial varieties, including genetically modified organisms (GMOs) into traditional farming systems. 99% of soy is now GMO. The main trend is towards more genetic and ecological uniformity, which increases the vulnerability of systems. Pressure comes from the food industry that demands for uniformity of production.

Ethnobotanists and new crop developers believe that the natural plants cover all basic energy and food needs. In their opinion, there is no need for GMOs. Ethnobotany can document plant use and characteristics. Ethnobotany studies the relations between man and plants with an emphasis on plants used by people (through interviews, literature studies, etc.). In this respect the most interesting environments are traditional settings because people have developed coping strategies, we no longer have to cope with. People in traditional settings have to cope with sometimes extreme environments, in that way we can learn a lot about them. When we do ethnobotanical research we try to find those species with interest for domestication. The different steps are: inventorying – botanical description, determination and classification – domestication and new crop development for local, regional, and international markets.

Discussion:
What could be the relevance of ethnobotany for Belgium? In Belgium not much work has been done on this. Yet, Belgium is having an increased diversity of people, a reality that could be taken into account; e.g. through Diaspora, people bring in plants, from wherever they come.

PRESENTATION 2: Biodiversity and genetic diversity contribution to durability and quality in fruit production
By Wannes Keulemans (KULeuven)

The presentation explained the importance of genetic diversity in fruit production, focusing on the case of the apple in Belgium. Agrobiodiversity is low in the agro-ecosystem itself (but high compared to other crops). Increase of biodiversity as such is not evident, increase for specific aims (IPM) is more realistic, especially from an ecosystem services point of view. Genetic diversity is not the same as biodiversity! There is more genetic diversity available than used for modern cultivar breeding. Genetic resources from wild apples are underexploited. There is a high need for conservation because of loss of natural potential (e.g. disease resistance still present in wild apple, understand the difference in reaction between plants). An important research question is: how many genotypes do we need to conserve genetic diversity?

Some recommendations for policy makers:
- Reduce conservation for the sake of conservation (better knowledge is needed on why we conserve and the goal of it)
- Focus more on conservation of functional genetic diversity in crops (i.e. form, vitamin C content, firmness, size, taste, etc.) and their wild relatives
- Invest more in knowledge and applications of natural resources (breeding)

Discussion:
Is there any kind of proof that eating different varieties of apples would be healthier than eating one specific type? We have so many different types of food that eating a Golden or a Cox will not make the difference. But, if consumers only had Goldens, and did not like Golden, they would not eat apples. This may have an effect on health as the apple, an healthy component, may drop out. People having a more ‘biodiverse’ diet, are healthier than the ones who mainly eat junk food. There is a necessity of showing that apples are an important component in a healthy diet.

Do orchards represent a good opportunity to combine biodiversity and food production? For instance, in relation to IPM (increase for specific aims) and also natural predators? This is complicated. It is sometimes good for the agricultural system, but we have to take in mind, that there is also a turnover effect to wild populations, that are not always positive. Especially in an intensive system, the application of the use of biodiversity is limited. It is much more pronounced in perennials, compared to wheat or maize for instance. It is recommended to invest more in knowledge. In the past, research focused on pesticides and fertilizers. When will we do the same effort to invest in what is present in nature?
PRESENTATION 3: Biodiversity and Food: The transition towards a sustainable food system

By Erik Mathijs (KULeuven)

The presentation aimed to present the theme of biodiversity and food through a more global perspective of sustainable food production and to find out how the current food system could be transformed into a more sustainable system.

What are the main challenges towards 2050?

- One billion people are hungry. Increase of world population with 30% living primarily in megacities in least developed countries
- Incomes will rise in developing countries, causing a diet shift towards more meat and vegetable oils; and towards a ‘Western’ diet including more sugar and salt
- The United Nations Food and Agriculture Organization (FAO) claims there will be a need for a rise in food production by 70%, despite an increase of population by 30%. However, whether we really have to increase food production by 70% or only by 30% makes a huge difference. There is too much emphasis on the ‘magical’ 70%.
- Natural resources are becoming scarce (peak oil, peak fish, peak water, peak biodiversity, all reinforced by climate change).

How can we move towards a more sustainable food system? What changes would be possible?

1. Increase resource efficiency (increase productivity and input efficiency)
2. Recycle nutrients
3. Increase consumption efficiency. Reduce food waste: according to current estimates of FAO, 30% of the food that is used is being wasted or is lost. A change in diet composition towards health conditions (less meat, sugar, more vegetables and fruits) could also contribute to consumption efficiency
4. Accelerate demographic transition. Reducing population has the biggest effects
5. Reduce material consumption

One narrative about the food system clearly dominates: do more with less, efficiency, emphasizing productivity and aiming for a sustainable intensification. This narrative dominates another narrative: less is more, consume less, being demand and ecosystem driven. This dominance has great impact: “regardless of its stated aims- a dominant narrative succeeds in the normative sense of gaining resources and power, while pre-empting alternative futures” (Levidow 2008). The question is: how can we combine both? Can both paradigms be reconciled? We need both.

Discussion:

We should not only feed people, but also improve their health. What did change in the last 50 years in Europe, in Belgium? We reduced the area of permanent grassland and increase the area of cereals and forage. And consumers started to eat more pig and poultry meat than red meat. Poultry is fed with grains, cereals and so on, while cattle, even dairy cows and beef cattle have increasingly been fed with cereals and maize. When grass is replaced by maize, one needs proteins. So we have to find protein somewhere else: in soybeans. So we have imported huge amounts with an exponential increase of animal feed since the 1960s, and as such, are destroying the campos in the south of Brazil, as well as the pampas. We are indirectly destroying the tropical rainforest in Brazil for feeding our pigs and poultry. Another issue is that feeding animals with grains instead of grass, results in having 3 times more of total fat in the food, 10 times more of Omega 6 than Omega 3 fatty acid, which induces obesity and allergies. Obesity in itself causes cancer and heart diseases. So we are destroying biodiversity in Europe because even intensive permanent grassland are better for biodiversity than arable land, and they are destroying species rich habitats in South America for producing soybeans. At the same time, all these are bad for our health. Here is a clear link between biodiversity and health. We should eat less pig and poultry meat, and we should feed our cattle with grass and not grains.

Outcomes of the workshop on Biodiversity and Food:

The participants of the workshop concluded on the following list of most urgent issues for Belgium:

Scientific relevance

- Need for studies on genetic diversity of food species and more studies on functional genetic diversity (e.g. traits such as firmness, colour, taste, size, etc.) in crops and wild relatives
- Need for studies on the level of diversification of diet for health and the relation between both (Is there a clear link between diversification of food intake and health? There is currently no consensus on optimal diet in the scientific community)
- Need for research on multifunctional agriculture, on ‘gardinification’ and alternative land-use changes in Flanders and the effect on biodiversity
- Need for studies on ‘real’ price of food (social-environmental-… costs) and how to incorporate these elements into policy instruments; research on new policy instruments including rewards (e.g. PES Evian)
- Need for studies on what resilience means for Belgium, including food consumption and health security
- Need for research on GMOs impacts on environment and health
- Need for more research on system analysis and studies on the interdependence of our global food system

Policy relevance

- Need for an increased consumer awareness on different effects of food consumption patterns on biodiversity (e.g. meat, production of waste, ecological footprint, etc.)
- Need for influencing catering chain for more environmental friendly behaviour
- Need for alternative proteins for livestock
- Need for change in awareness and consumer behaviour (e.g. other cattle breeds)
- Need for combined conservation measures and to focus on ‘social diversity’ and their use of biodiversity
- Need to focus on urban biodiversity (e.g. allotments, gardens)
Before starting the discussions, participants in the workshop ‘Nature experience and the Question of Health’ listened to three presentations:

PRESENTATION 1: Experiencing nature in or outside daily life: some reflections
By Ilse Simoens (INBO)

This presentation was based on interviews with inhabitants of a specific area in Flanders on their perception of the landscapes, and based on a card game where the people were asked to rank the landscape services by importance. The results of the study showed that apart from clean water and clean air, people appreciate a lot of other services nature provide us with: e.g. the landscape experience. At the same time, the research results show that the intensity of daily contact with nature has been significantly reduced over the past 30 years. Reasons why people are less in nature: industrialisation of the agriculture, regulations and privatisation of open space, children have less contacts with outside activities, household activities mostly take place inside nowadays, communication on the danger of nature and food consumption, exotic food and gardens. The nature-human relation shifted from a dependent to a non-committal contact so that spending time in nature becomes an activity in itself.

PRESENTATION 2: Green Care at the crossroads of agriculture, health care and social inclusion (case study: Flanders)
By Joost Dessein (ILVO)

“Green care” or “Farming for care” in the UK and “Social farming” in Italy, are the same phenomenon: using farms to bring health care to people. The idea is that agricultural farms – animals, plants, gardens, the forest and the landscape – promote human mental and physical health, as well as quality of life, for a variety of client groups. Nature, work and the family are the three components that promote these benefits. In Flanders, there are around 500 farms. Simultaneously to this development is a growing pressure on agriculture from an environmental perspective. There is a lot of pressure from the policy makers to promote the concept of “Multifunctional Agriculture”.

PRESENTATION 3: Ecotherapy ‘Well-being in balance with nature’
By David Jelinek (Anima Mundi)

David Jelinek explained what Ecopsychology is (a blend of fields: environmental philosophy, separation theory, psychology, and ecology). At its core, ecopsychology suggests that there is a synergistic relation between planetary and personal well-being; and that the needs of the one are relevant to the other (inborn natural attraction to nature). Ecotherapy is based on his theory. By doing an exercise with the group, people could experience the way ecotherapy works.

Outcomes of the workshop ‘Nature experience and the Question and Health’:

Three questions related to the presentations were discussed in breakout groups:
1. Do the benefits of experiencing nature interwoven in our daily life and connected to our daily activities differ from the benefits of outdoor recreation for human well-being? Is there a need to reintegrate nature experience in daily life practices and how would that be possible?
2. Nature, agriculture, well-being and health care merge together in the practice of ‘care farming’ or ‘Green Care’. How can the diverse policy domains that are involved, support such an interdisciplinary practice? And should such practices merely be subsidised, or be handed over to the free market?
3. What are your personal experiences in life that had an effect on recognizing nature as a healing/well-being source? (recollections, feelings, not evidence)

The discussions resulted in a table where the relation between nature experience and health were analysed on three levels: public health, health care delivery systems and individual (group) health:

<table>
<thead>
<tr>
<th>Where to insert</th>
<th>Public health</th>
<th>Health Care delivery systems</th>
<th>Individual/ group therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Transport</td>
<td>Hospital design</td>
<td>Interested communities</td>
</tr>
<tr>
<td>Housing</td>
<td>Housing</td>
<td>Location at services</td>
<td></td>
</tr>
<tr>
<td>Work places</td>
<td>Recreation</td>
<td>Educational</td>
<td></td>
</tr>
<tr>
<td>Recreation</td>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location at services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual/ group therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Depending on the level, participants of this workshop found differences that should be focused on in order to increase the benefits from nature experience.

Several other issues for further work on nature experience were highlighted:
- Involvement of different policy domains (agriculture, nature and health, education, spatial planning, mobility)
- Generic policy versus context specific developments
- Policy that supports small scale creative initiatives and that allows experiments and failure.
Workshop Public health as an ecosystem service indicator

Before starting the discussions, the participants in the workshop ‘Public health as an ecosystem service indicator’ listened to two presentations:

PRESENTATION 1: What is biodiversity?
By Anne Franklin (RBINS)

Anne Franklin presented some slides introducing biodiversity: an insect, soil and plants, a river, a woman bearing sisal on her head. The participants were asked to characterize these images by some words that first came to their minds. These words were quite different for each participant. For example, in the case of the river picture, different words were mentioned: the water cycle, the fauna (fish, birds), the flora, but also all the aspects linked to human well-being (swimming, relaxing, hiking, fishing). Perceptions moreover can be influenced by many factors, e.g. weather conditions.

The definition of biodiversity of the Convention on Biological Diversity (article 2) was introduced: “Biological diversity means the variability among living organisms from all sources including interalia terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes biodiversity within species and of ecosystems”. In the common definition of biodiversity, the ecological complex is generally forgotten; this means that biodiversity is more than the organisms; the systemic and dynamic aspects are very important.

Then, the Ecosystems Goods and Services definition was presented: “Ecosystem goods and services can be defined as the contributions that ecosystems make to human well-being and arise from the interaction of biotic and abiotic processes” together with their classification (CICES = Common International Classification of Ecosystem Goods and Services) according to theme (provisioning, regulating and maintenance, culture), classes and categories. The example of agave sisalina (sisal) was developed; this plant being important from an economic point of view (fabrication of carpets, baskets, ropes), but can also be an invasive plant.

PRESENTATION 2: The unclear relationship between Health-wellbeing and biodiversity
By Tom Bauler (ULB)

Tom Bauler touched upon the impact of biodiversity on ecosystems services, which is in some cases health related; health being an important constituent of well-being. In fact, the final indicator of well-being could be public health. As such, the definition of well-being is not only important but also fundamentally problematic.

The cascade diagram of Haines-Young (Figure 2) makes a distinction between ecological structures and processes created or generated by living organisms and the benefits that people may derive from them. The Millenium Ecosystem Assessment diagram (Figure 3) representing the links and the intensity of the links between ecosystem services (supporting, provisioning, regulating, cultural) and constituent of human well-being (security, basic material for good life, health and social relations) present another way of framing the relation between biodiversity and public health.
Outcomes of the workshop on ‘Public health as an ecosystem service indicator’:

The ecosystem services indicator workshop was generally considered to touch upon a relevant generic issue from the perspective of all other biodiversity and public health related topics. This is exemplified in the broad interest conference participants showed for this workshop. Participants were given the option to choose a first and a second choice workshop to attend. Whereas most participants chose a topical workshop close to their field of interest/expertise, many selected the ecosystem services workshop as a second choice. During the workshop this generic significance was underlined, but also seen as a challenge that probably was a bridge to far considering the current state of development in the broader domain of biodiversity and public health. As such preliminary steps were suggested.

Public health related ecosystem services considered relevant for Belgium:
- Food: urban agriculture versus wild nature
- Air: fine particles (traffic, house warming)
- Water: storm water management
- Infectious disease: Lyme, hantavirus, exotic mosquitoes
- Nature experience: urban green spaces, mental health, youth conflicts
- The bees population as an indicator for pollination and biodiversity

Issues considered relevant both for science and policy:
- Catalogue of linkages between biodiversity and public health
- Trying to connect what is already available: data, indicators, etc.

Issues specifically considered relevant from a scientific perspective:
- Better communication of the issues by experts to policy makers
- Health science should open up to environmental/biodiversity issues
- To what extent can health be included in cost benefit analysis and related ethical and scientific issues?

Issues specifically considered relevant from a policy perspective:
- Better evidence based and/or precautionary dialogue between policy makers, scientists and the public at large
- Linkage to (other) policy priorities, e.g. climate change
- Development of new indicators
- Cost benefit analysis of potential policy measures

Panel discussion and closure of the conference

A common denominator of all workshop discussion outcomes as presented in the final panel discussion was the need to build bridges and join forces, both amongst different fields of expertise, different policy domains and societal sectors. In the conference closure statement of Jurgen Tack (Member of the Board of Directors of the Belgian Biodiversity Platform and Director of INBO), this was once again underlined. He expressed his interest in next steps to be taken for building on the good experience of the conference as to make the best of establishing a Community of Practice for the important relation between biodiversity and public health in Belgium.
The use of medicinal plants among Andean migrants in London (UK): Urban ethnobotany, resilience and coping strategies

Melissa Cauterick (current affiliation: Research Institute for Nature and Forest, Brussels)

BACKGROUND
Analyzing why and how ethnobotanical traditions ‘survive’ is important for a better understanding of migrant health care behaviour (Ferrell & Ferrell 2008; Cauterick et al. 2020). This study investigates the use of traditional medicinal plants among first generation migrants from Bolivia and Peru in London (UK), in relation to practices among a poor group in their home countries. By comparing data on active plant uses and their applications, novelty and differences between health care practices before and after migration can be outlined.

MAIN QUESTION
How does the use of home-remedies among two Andean communities in the UK change and adapt to the light of migration?

Comparison of most useful species before and after migration

The most useful native species included:
1. Matricaria recutita (Lavendel-Minze)
2. Urtica dioica (Stacheldraht-Sauerkraut)
3. Eucalyptus globulus (Lüßiges Eukalyptus)
4. Solanum tuberosum (Gelber Kartoffeltopf)
5. Phytolacca acaulis (Stachelbeere)
6. Zinnia elegans (Sonneblume)
7. Lycium ruthenicum Muench. (Echter Himbeere)
8. Persea americana (Abendblatt)
9. Mentha spicata (Wacholder-Minze)
10. Berberis vulcanica (Andina Berbe)

The most useful exotic species included:
1. Mentha spicata subsp. pulegium (Pfeffer-Minze)
2. Eucalyptus globulus subsp. globulus (Lüßiges Eukalyptus)
3. Solanum tuberosum (Gelber Kartoffeltopf)
4. Citrus aurantium (Orangen)
5. Zinnia elegans (Sonneblume)
6. Uncaria tomentosa (Kampferpflanze)
7. Commiphora myrrha (Wacholder-Minze)
8. Piper nigrum (Kardamom)
9. Pimenta dioica (Piment)
10. Eucalyptus globulus subsp. globulus (Lüßiges Eukalyptus)

METHODS
Data on plant uses in London were collected during 30 months of fieldwork in 2005–2007, covering 38 semi-structured interviews (on their use and perceptions of traditional medicines) in London (UK). Cochabamba (Bolivia) and Lima (Peru) (conducted in Spanish) – voucher specimens of all reported species were collected and identified (in 46).

RESULTS
- Peruvians and Bolivians in London continued to use traditional medicine for common, self-limiting ailments that were also widespread in their countries of origin, e.g. gastro-intestinal complaints, common cold (shift from more serious ailments such as hypertension, diabetes)
- Rosarios for using herbal medicines; practical, health concerns, cultural and/or economical. Cultural motives became more important after migration.
- Less species (between 24-35% of home-countries) were used for fewer health conditions due to availability of more biomedical alternatives and diminished access to traditional herbal remedies.
- The same widely used (thereby readily available cosmopolitan or culturally relevant) plant species appeared in the post-migration group (e.g. caña, chamomile, lemon, eucalyptus…)
- Less frequently available medicinal species were used in London and more edible, primary food species were consumed for medicinal purposes after migration, treatments were more popular after migration

MAIN CONCLUSIONS
Bolivian and Peruvian migrants in London prove to be resilient in their use of home-remedies when faced with the changes that came with migration. The observed ethnobotanical coping strategies are characterized by 1) the preservation of culturally relevant species (cultural key stone species) as a positive influence of the presence of cultural diversity (cultural edge effect), 2) creative blending of different kinds of knowledge and resources, mobilizing an increased use of dried, processed alternatives and food species. 3) It is resilience on social networks for the exchange of plant material.

REFERENCES

ACKNOWLEDGMENTS
The presented results form part of a larger study on the use and perception of traditional medicine among La London branch of the OAS/Bolivian Research Project (Grant 50023). Special thanks go all participants in this study.

34

Posters

Posters presented during the conference:
- The use of medicinal plants among Andean migrants in London (UK): Urban ethnobotany, resilience and coping strategies
 By M. Cauterick
- Pathogen infectivity and virulence in freshwater zooplankton modified upon cyanobacterial algal exposure
 By M. Coopman, E. Decaestecker and K. Muylaert
- Evidence for recent expanded distribution of arbovirus and Malaria vectors in Belgium caused by man-made breeding sites
- The natural relation between biodiversity and public health: an ecosystem services perspective
 By H. Keune, P. Martens, H. Wittmer and J. Förster
- Modelling the spatial dynamics of pathogen transmission in tick-borne disease system
 By S. Li and S.O. Vanwambeke
- Impacts of the volcanic plumes in North Kivu (D.R. Congo) - Preliminary results
 By C. Michellier, B. Smetts, M. Damaix-Wilmet, J-B. Kahindo, F. Kervyn
- The effects of a changing N:P stoichiometric ration on Daphnia-parasite interactions
 By L. Reyserhove, K. Muylaert, E. DeCaestecker
- Converting pine plantations to mixed species forests: Implications for koles ricus ticks and public health
 By W. Tack, M. Madder and K. Verheyen
- Landscape and vector-borne diseases: a complex interaction illustrated with mosquito- and tick-borne diseases
 By S.O. Vanwambeke
Pathogen infectivity and virulence in freshwater zooplankton modified upon cyanobacterial algal exposure

Coopman M., Decaestecker E. and Muylaert K.

Introduction

The water flea Daphnia magna is a small crustacean with a very important role in lakes. It is a primary grazer of phytoplankton in lakes, by such controlling phytoplankton blooms and bringing freshwater systems in a stable clear water state (Scheffer, 1998). But due to severe eutrophication, cyanobacteria blooms have become a worldwide problem in freshwater ecosystems (Cald et al., 2005). Cyanobacteria blooms are harmful for fish, other aquatic communities and humans by the production of exotoxins, hepatotoxins (e.g., microcystin), cyanotoxins and allergens (e.g., anatoxin-a). Microcystis, a genus of cyanobacteria blooms. Schlichter and White (2005) noted that: “The effect of cyanobacteria blooms is a signiﬁcant problem.” (Scheffer, and Decaestecker, 1999). For this reason, the effect of cyanobacteria blooms is a signiﬁcant problem (Scheffer, 1999). The effect of cyanobacteria blooms on aquatic animals and communities is a signiﬁcant problem (Scheffer, 1999). For this reason, the effect of cyanobacteria blooms is a signiﬁcant problem (Scheffer, 1999). The effect of cyanobacteria blooms on aquatic animals and communities is a signiﬁcant problem (Scheffer, 1999).

Results

In this study, Daphnia magna was simultaneously exposed to different concentrations of a non-microcystin producing cyanobacterium Microcystis aeruginosa and its parasite White Bacterium Disease. Infected hosts can be easily distinguished by their bright white algal-tissue with a slight greenish shine in reﬂected light.

Results show:
• A signiﬁcant negative effect of Microcystis aeruginosa on Daphnia magna individuals. Daphnia survive [x], total offspring per surviving female [y] and clutch size [z] decreases, and time to ﬁrst clutch [w] increase with increasing Microcystis concentrations.
• Daphnia survive [x] decreases, and time to ﬁrst clutch [w] increases with increasing Microcystis concentrations.
• Daphnia survive [x] decreases, and time to ﬁrst clutch [w] increases with increasing Microcystis concentrations.
• The cyanobacteria effect is weakened by White Bacterium Disease in case of ﬁrst clutch size [z].

Moreover, Daphnia individuals produce more individuals when exposed to both parasite and Microcystis [x]. This rise can be due to an earlier ﬁrst brood, but not to clutch size.

The positive effect of Microcystis on the parasite effect, can be explained by a reduction of the parasite White Bacterium Disease by Microcystis [y]. A paper also dicsussed the ambivalent activity of the Microcystis cyanobacteria in the freshwater lake (z).

Conclusion

Low concentrations of a non-microcystin producing Microcystis aeruginosa protect Daphnia exposed to parasites from dying. Moreover these Daphnia have a higher ﬁtness by a better survival and a higher production of offspring. So low concentrations of non-microcystin producing Microcystis are no harm and size even beneﬁcial Daphnia populations thereby decreasing the deplete of phytoplankton and promoting the aquatic communities and the biodiversity of the lake.

References

Evidence for recent expanded distribution of arbovirus and Malaria vectors in Belgium caused by man-made breeding sites

RBNS COLLECTIONS

Ancient mosquito records from the period 1900-1960 were retrieved from a revision of the Belgian Calicidae collection at Royal Belgian Institute of Natural Sciences.

MODIRISK

Standardised Collecting Technique

A recent inventory of native and invading mosquito species in Belgium, a dataset with records of a recent mosquito mapping.

1) Recent Belgian situation

Analysis with well surveyed grid cells in both periods. To correct for difference in sampling intensity and methods during both periods, for each species a standardized residual was calculated:

RES = (Estimate of Historic diversity/distribution − Estimate of Present diversity/distribution) / Estimate of Historic diversity/distribution

For each of the well surveyed grid cells a trend criteria was calculated:

TREND: (Predive - Postive) / (Predive + Positive)

With: TREND = (Predive) / (Postive)

1. TREND > 1.25: increasing diversity
2. TREND < -1.25: decreasing diversity
3. TREND between 1 and -1: no trends

2) Estimate the relative changes in distribution area for each mosquito species in Belgium

Proportion of the number of cells where x is the number of recorded grid cells for a given species and m is the total number of grid cell surveyed.

The log-transformed proportion was estimated at logit(Proportion)

The index of relative change in distribution area for each species was obtained by the standardized residual from the fitted logistic line of logit (P) recent inventory versus logit (P) collections.

Species below the regression line: Decreased their relative distribution area

Species from forest and natural sites

Species from forest and natural sites
Biodiversity at all levels directly and indirectly influences human health. ‘Sacred Cows and Sympathetic Squirrels’ (Dobson et al. 2006) beautifully illustrates this natural relation. The cows, sacred in India for religious reasons, also serve as a buffer against the spread of malaria: they are bitten by mosquitoes that would otherwise bite humans. The squirrels are known for a similar buffer effect as they help prevent the spread of Lyme disease amongst humans. Control of infectious diseases is an important human-health related ecosystem service.

Examples from TEEB cases (available at www.teebweb.org)

<table>
<thead>
<tr>
<th>Biodiversity</th>
<th>Public Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic resources, natural products...</td>
<td>Medicine & therapy</td>
</tr>
<tr>
<td>Food provision, pollination, ...</td>
<td>Healthy diet</td>
</tr>
<tr>
<td>Air purification</td>
<td>Clean air</td>
</tr>
<tr>
<td>Water purification</td>
<td>Fresh water</td>
</tr>
<tr>
<td>Buffering of floods, drought & effects of climate change</td>
<td>Natural hazard protection</td>
</tr>
<tr>
<td>Buffering spread of infectious diseases</td>
<td></td>
</tr>
<tr>
<td>Biological control of invasive species</td>
<td></td>
</tr>
<tr>
<td>Biological control of infectious diseases</td>
<td></td>
</tr>
<tr>
<td>Recovery from illness & stress, social ties and physical activity, inspiration and culture, intellectual performance and child development</td>
<td></td>
</tr>
</tbody>
</table>

Water tank rehabilitation benefits rural development, Sri Lanka: Direct water tanks provide multiple benefits for water supply, nutrition and health. The benefits include water for drinking, use in livestock and for health care. Compensation scheme for specimen berries in municipal protected area, Australia: The council agrees to pay an additional charge on their water bill for financing specimen woodland protection which ensures water quality and quantity.

Biodiversity at all levels directly and indirectly influences human health. Biodiversity decline can increase the spread of infectious diseases. The loss of diversity in small rodent species increases the risk for the transmission of diseases like the bartonellosis. Protection of biodiversity, buffer or landscape heterogeneity can help to reduce the spread of diseases.

The natural relation between biodiversity and public health: an ecosystem services perspective

Hans Keune*, Pim Martens**, Heidi Wittmer*** & Johannes Förster****
* Research Institute for Nature and Forest (INBO) & Belgian Biodiversity Platform (BBP), Belgium
** International Centre for Integrated Assessment and Sustainable Development (I4CSD), The Netherlands
*** Helmholtz Centre for Environmental Research – UFZ, Germany & TEEB scientific coordination

2011 Belgian Biodiversity – Public Health Conference, Brussels, November 30

Modelling the spatial dynamics of pathogen transmission in tick-borne disease system

Sen Li and Sophie O. Vanwambeke
Georges Lemaître Centre for Earth and Climate Research, Place Pasteur 3, B-1348 Louvain-la-Neuve, Belgium
sen.li@uclouvain.be

OBJECTIVE

To develop a spatially-explicit model, based on cellular automata (CA), to represent spatial heterogeneity and simulate spatial dynamics of a tick-borne pathogen in non-static populations of ticks, reservoir reproduction hosts.

BACKGROUND

Typical epidemic models are non spatial and assume an even spatial pattern for ticks, hosts and pathogens. These assumptions are rarely valid for tick-borne diseases. A CA model can simulate disease dynamics in a spatially explicit context.

THEORY OF THE PROPOSED MODEL

Three layers of cell states and key transition rules in the CA model:

- Tick population layer
 - all post-egg life stages
 - infectious vs. susceptible
- Host population layer
 - infectious vs. susceptible reservoir host
 - reproduction host
 - random movement
- Landscape layer
 - static, woodland vs. grassland vs. non-vegetation

RUNNING THE MODEL: CONSEQUENCES OF LANDSCAPE FRAGMENTATION

Scenario:
32 scenarios based on:
(i) two elements of woodland (green area) fragmentation:
 - percentage of woodland size of block
(ii) two situations of adjacent land cover (white area) types:
 - grassland (situation I)
 - non-vegetation area (situation II)

For each scenario, five maps were generated randomly.

Further analysis
Indices of Lyme disease risks:

- DON (density of nymphs)
- NIP (nymphal infection prevalence)
- OIN (density of infectious nymphs)

Indices of woodlands were regressed against metrics using linear, power and exponential regressions.

FUTURE DEVELOPMENT & APPLICATIONS

The proposed model can be:
- further developed to include climatic influences on tick biology (e.g. survival, questing activity, interstadial development, etc.)
- integrated with agent-based models to assess human exposure to tick-borne diseases
- applied to specific real world cases (e.g. Lyme disease risk in woodland and grassland) to simulate the role of landscape heterogeneity, climate changes and host composition & dynamics on pathogen transmission.
Impacts of the volcanic plumes in North Kivu (D.R. Congo)

Preliminary results

Caroline Michellier, Benoît Smets, Michèle Dramaix-Wilmet, Jean-Bosco Kahindo, François Kervyn

- Department of Earth Sciences, Royal Museum for Central Africa, Belgium
- Research Institute Pierrick, Université Libre de Bruxelles, Brussels, Belgium
- CEMUBAC, Université Libre de Bruxelles, Belgium

General Context

Our study area at assessing the risk on population health and vegetation resulting from the volcanic plume emitted by Nyiragongo and Nyamulagira, two of the most active volcanoes in Africa, located in the Democratic Republic of Congo (DRC). Here we present the studied region and the preliminary results.

Impacts of the volcanic plumes on vegetation biodiversity

Direct impacts

- The emissions of vegetation in high-altitudinal zones of volcanic SO2, induced exposure results in a strong reduction in the number of plant communities (Delmelle et al., 2002).

Indirect impacts

- Development of non-native weeds, annual, and invasive species for a large number of plants, which participate in deforestation (WHO Air Quality Guideline, 2005).

Impact of the volcanic plumes on public health: preliminary results

Health effects from eruptions and dispersing events are increasingly recognized as an important public health concern (WHO). In this context, we aim to contribute to the body of evidence on the effects of volcanic plumes on human health, focusing on ARI cases.

Methodology

- Study of Daphnia-parasite interactions
- Genetical analysis
- Microcosm

The effect of a changing N:P stoichiometric ratio on Daphnia-parasite interactions

Lien Reyserhove, Koenraad Muylraet, Ellen Decaestecker

Scientific aim

Environmental fluctuations are often excluded from host-parasite coevolutionary studies. The proposed research project aims at obtaining insight into the influence of changes in ecosystem quality, focusing on a changing N:P ratio and the effect on eco-evo dynamics in Daphnia with respect to parasitism. We will focus on multiple parasite species, differing in growth rate and competitive ability, two aspects assumed to be affected by P-limitation ("growth rate hypothesis"). We will first evaluate the short-term effects of elemental constraints on Daphnia parasitism, focusing on within-host parasite competition. Then, we will test the effect of a changing N:P stoichiometry on (i) population level, (ii) Daphnia microevolutionary changes and (iii) the top-down control of photoplankton by Daphnia. P-limitation could lead to a reduced "top-down control" of the photoplankton, which in turn could reduce the efficiency of the current efforts to reduce P-emissions in natural ecosystems; an effect that we hypothesize to be affected in a parasitized ecosystem.

Expected results

- We expect that the effect of a changing N:P stoichiometric ratio will depend on the presence of parasites. We suggest that a changing N:P stoichiometric ratio will result in a higher virulence and a lower infectivity and infection-intensity of the parasites.

Lien.Reyserhove@kuleuven-kortrijk.be
05/24/24-24-88
K.U. Leuven Kulak, Lab. Aquatic Biology, Belgium

REFERENCES

Converting pine plantations to mixed species forests: Implications for *Ixodes ricinus* ticks and public health

Wesley Tack, Maxime Madori & Kris Verheyen

Laboratory of Forestry, Ghent University, Gravensteen 101, 9000 Ghent, Belgium
Department of Forest Health, Institute of Tropical Medicine, UniversiteitAntwerp, 2000 Antwerp, Belgium

Introduction

At present, large areas of northern Belgium are dominated by homogeneous pine plantations on nutrient-poor and acid sandy soils. However, in common with many other parts of Europe, the current forest management aims at increasing the share of deciduous and mixed forests, which might create more favourable habitats for the sheep tick (*Ixodes ricinus*). This tick species is Europe’s main vector of Lyme disease, now the most prevalent vector-borne disease reported in the northern hemisphere.

Considering the threat to human health, it is important to know which factors regulate tick abundance. Adequate vegetation cover, providing protection against adverse environmental conditions, and access to host animals for feeding and reproduction are essential for the survival and development of tick larvae. We selected forest stands varying in dominant tree species (pine or oak), shrub cover and herb layer abundance in order to determine the importance of these factors and to evaluate the impact of forest conversion on tick abundance.

Material & Methods

Study site and experimental design. Fieldwork was carried out at 21 forest sites in northern Belgium (Fig. 1). At each forest site, 5–15 forest stands were selected for tick-sampling. A total of 176 forest stands were selected for tick sampling. A total of 176 forest stands were the impact of forest conversion on tick abundance.

**A total of 25,204 *Ixodes ricinus* ticks were collected from 21,502 larvae, 2,442 nymphs and 246 adults. All life stages were found at each of the 21 forest sites sampled. The results indicated a significant effect of tree species and shrub cover for all three life stages (*P<0.001*). The herb layer cover and the interaction terms were not related to tick abundance. The abundance of larvae, nymphs and adults was significantly higher in oak stands compared to pine stands, and a significant positive effect of shrub cover was found for all three life stages (Fig. 3). Oak stands with high shrub cover yielded 7.7 more ticks than pine stands with low shrub cover.

Results

Conclusions

The use of vegetation management as a tool to control ticks.

References

Correspondence: Wesley.Tack@UGent.be

Acknowledgments: This research was co-funded by the Agency for Nature and Forests for the permission to work in the forest sites.

Research funded by a PhD grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT).

References

The organisers of the conference asked participants to give their feedback on the conference in a short questionnaire. Almost 30% of the participants responded:

<table>
<thead>
<tr>
<th>Response rate</th>
<th>Policy</th>
<th>Science</th>
<th>Consultancy</th>
<th>NGO</th>
<th>Media</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>13</td>
<td>55</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>Response</td>
<td>4</td>
<td>17</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Response rate</td>
<td>23,10%</td>
<td>31%</td>
<td>22,22%</td>
<td>33,33%</td>
<td>0%</td>
<td>28,40%</td>
</tr>
</tbody>
</table>

1. What is your general impression of the conference?

The general impression of the conference was positive:

Some comments:
“Very interesting, but a lot of (too many ?) different aspects in a short time, thus also few time for networking for people who did not already know each other.”

“The overall intention was excellent, and I was happy to see that the organizers succeeded in bringing policy makers together with researchers. Everything worked quite well, though I would have preferred a deeper room to a wider room. I especially appreciated the inclusion of workshops in the program, allowing for substantial exchange among participants.”

“This obviously was a first attempt at bringing together science and policy making. Much more efforts will be needed to achieve long term results. At this stage focus should be on getting scientists to agree on the link between biodiversity and public health. This was still very unclear at this stage, and it may have confused decision makers.”

“I liked the initial goals of the conference, but it seems as though the approach to each these goals was not focused enough. A focused approach would be to simply categorize all possible views on this topic and next to identify priorities in each category. This is what the conference tried to do, but the final step of gathering all ideas seemed a bit too difficult. Maybe the different views on public health differed too much to be able to come to a joint conclusion?”

“Good initiative, but too academic, reality is broader.”

“Next time we need more medical/public health people!”

“Great mix of people. Challenging to organize but I would say, a success.”
2. What is your impression of the keynote presentations?

The keynote presentations were positively evaluated:

[Diagram showing evaluation results: 52% Good, 26% Rather good, 22% Very good, 9% No answer]

3. What is your impression of the workshop you attended?

Most participants appreciated the workshop they attended:

[Diagram showing evaluation results: 44% Good, 30% Rather good, 17% Very good, 9% No answer]

4. What is your impression of the final panel discussion?

Mixed feelings are observed on the final panel discussion:

[Diagram showing evaluation results: 22% Good, 26% Rather good, 17% Rather bad, 35% No answer]

5. Are you interested in further collaboration on Biodiversity - Public Health?

Almost 80% of the respondents indicated they would be interested in further collaboration on Biodiversity - Public Health:

[Diagram showing evaluation results: 78% Yes, 22% No, 75% No answer]
Some ideas that were suggested by participants:

“Prepare a short position statement note suitable to communicate with relevant expert organisations and institutions. Prepare a discussion note on next steps regarding organization of the network. Prepare a short note on a limited number (3?) of emerging research questions.”

“Monitoring biodiversity in rural and suburban areas.”

“A concrete proposal would be to integrate the lessons learned from the conference into a statement for publication in a relevant journal.”

“1. Not too much emphasize on reports but focus on real exchange between people and disciplines.
2. Experience focused approach, by creating a mixture between the mental level and the experience level, which would not be harmful for scientists, on the contrary.
3. Involve more people from a diversity of contexts to give presentations, not only scientists. Otherwise you risk inward looking in academic circles, when the outside world (reality) is not always in accordance with scientific findings. The bio-divers system of humans and nature is more than the sum of the parts, but instead is an interactive interplay of many actors, not only scientific research. My main message is: invite more people from many contexts who are dedicated to biodiversity, it is only then you can reach an integrated full picture. A challenging opportunity.”

“Yes, it’s important to organize such meetings at the Belgian level. Also interesting for the communication between scientists and policy makers.”

“Direct concrete ideas are situated within the field of evaluating and the impact of biodiversity on rodent borne zoonotic disease transmission. I liked the idea about conflicting interest between species conservation through restoration of specific habitats and its impact on species invasion and introduction or re-emergence of zoonotic pathogens. Biodiversity from the conservation point of view is extremely important and should remain first priority. Nevertheless it is interesting to consider possible secondary effects of certain changes in land use, but also land disturbance, habitat quality, … on zoonotic disease risk.”

“Yes, indeed, to consider the biodiversity of prokaryotes and viruses, I’m concerned by the virodiversity that is not really considered by the biodiversity (of course, I understand that the society does not perceive biodiversity in that way)”

“Yes. Networking on concrete, and societal relevant topics.”

“Prepare further disciplinary divides (as was still reflected by most workshops).”

“I would definitely suggest to continue working on the issue at the Belgian level. There is much research needed at the interface health-biodiversity-ecosystem services, as well as awareness raising in the scientific, policy-maker and educational communities of both biodiversity and health stakeholders. Regarding the timing, I would probably suggest holding several small-size, and more focused workshops throughout the two years to come. This will help gather the scientific community around a common interest, would generate the much needed case studies at Belgian level and would start a dynamic that can lead to policy changes. For example, these workshops could take a similar form as those under the BEES project.”

“The ‘e-forums’ of the Belgian Biodiversity Platform have been used on several instances to exchange ideas and information, at the time when it was needed to gather momentum for scientific suggestions for policy changes (cf. the forest forum and the alien species forum). An ‘e-forum’ on health and biodiversity could be created, pending there is one or a few moderators ready to maintain the discussions going. It does not need to have a permanent life-span, but at least could be used for a limited period of time.”
Follow up

The need for a Belgian Community of Practice on Biodiversity and Public Health

A broadly supported generic outcome of the conference was a need for further capacity and network building. Therefore in February 2012, a policy brief was issued (Bauler et al. 2012) in which a variety of experts (science, policy, society) call for the support for the establishment of a Belgian Community of Practice on Biodiversity and Public Health. A Community of Practice (CoP) is a network made up of individuals and organisations that share an interest and practice, who come together to address a specific challenge, and further each others' goals and objectives in a specific topic area (Wenger and Snyder 2000; Meessen et al. 2011). An interesting international example is the Canadian Community of Practice in Ecosystem Approaches to Health (COPEH).

A Belgian Community of Practice on Biodiversity and Public Health would aim to build a strong network, stimulate capacity building and to produce an overview of the current state of Belgian knowledge capacity regarding Biodiversity and Public Health. Furthermore it would have the ambition to facilitate response to the demands of policymakers and stakeholders regarding Biodiversity and Public Health expertise at the Belgian level as well as at the international level in the context of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)5.

Copies of the policy brief in different languages can be found on the following pages and on the Belgian Biodiversity and Public Health website6. Currently the conference organisers are working on a scientific publication reporting on the conference outcomes and the need for the establishment of a Belgian Community of Practice on Biodiversity and Public Health, that hopefully will gain support as a funded cluster project.

5 http://www.ipbes.net
6 http://www.biodiversity.be/health
Biodiversity and Public Health in Belgium: an emerging field of interest

Research on the linkages between biodiversity and public health is an emerging issue that nevertheless has not received much concerted attention in Belgium to date. Considering that the issue attracts the interest of various scientific disciplines, including biodiversity, public health and social sciences, an interdisciplinary approach is called for. Promoting new linkages and collaboration amongst these disciplines, to propose appropriate new research ideas and topics is of priority. The expertise arising from such interdisciplinary research potentially has substantial added value for policy making. This will e.g. allow Belgium to live up to the Belgium Biodiversity Strategic14 aim of maximising the advantages for human health arising from biodiversity and expand the collaboration between the interested organisations / public services. To promote the integration of such expertise into relevant policy at different levels, a transdisciplinary approach is called for to ascertain the involvement of relevant stakeholders from different sectors of society in the development of a research agenda and projects.

On November 30th 2011, the Belgian Biodiversity Platform organized the first Belgian Biodiversity and Public Health15 conference. The meeting attracted 81 Belgian experts, 68% of whom were scientists (universities and government scientific institutes; health-, ecological- and social sciences), 16% represented policy interests (Federal, regions, provinces, cities, health, environmental, nature- and land planning policy), and the remainder comprised of consultants (policy advice, eco-therapy, education) and persons involved in NGOs (nature protection, landscape development, ecological life and gardening), or from media.

Discussions during the conference focused on priority scientific and policy challenges and resulted in the identification of several topical issues of priority interest. A general need for further capacity and network building was highlighted. This will require structured follow up of activities for science to adequately address societal challenges related to the Biodiversity and Public Health domain.

A BELGIAN COMMUNITY OF PRACTICE ON BIODIVERSITY AND PUBLIC HEALTH

CONFERENCE INVITING CALL FOR THE ESTABLISHMENT OF A COMMUNITY OF PRACTICE ON BIODIVERSITY AND PUBLIC HEALTH IN BELGIUM WHICH WILL:

- BUILD A STRONG NETWORK AND STIMULATE CAPACITY BUILDING
- PRODUCE AN OVERVIEW OF THE CURRENT STATE OF BELGIAN BIODIVERSITY AND PUBLIC HEALTH KNOWLEDGE REGARDING THE STRATEGIC TOPICAL AREAS OF PUBLIC HEALTH
- RESPOND TO THE DEMANDS OF POLICYMAKERS AND STAKEHOLDERS REGARDING BIODIVERSITY AND PUBLIC HEALTH EXPERTISE AT THE LEVEL OF BELGIUM AS WELL AS AT THE INTERNATIONAL LEVEL IN THE CONTEXT OF THE ESTABLISHMENT OF THE INTERGOVERNMENTAL PLATFORM ON BIODIVERSITY AND ECOSYSTEM SERVICES (IPBES)

REFERENCES

2. COHAB, Co-operation on Health and Biodiversity, http://www.cohabnet.org/
15. Canadian Community of Practice in Ecosystem Approaches to Health (COPEH), http://www.copeh-canada.org/index_en.php

AUTHORS

Bauder Tim (Université libre de Bruxelles), Coutoukis Melissa (Organisation for Tropical Stud-
ies), Coozsemans Marc (Institute of Tropical Medicine), Decaestecker Ellen (KULeuven Kuilat), De Deken Thomas (Martin Flemish Land Agency), De Smettie Bert (Gemeente voor Bos in Vlaanderen), De Vos Lieve (Vrije Universiteit Brussels), Gilbert Markus (Université libre de Bruxelles), Flandroy Lucile (Federal Public Service (FPS) Health, Food Chain Safety and En-
vironment), Franklyn Anne (Royal Belgian Institute of Natural Sciences), Gryseels Machteld (Brussels Environment), Hartig Terry (Uppsala University), Heyman Paul (Military hospital Belgium), Knoepfle Rieke (Vrije Universiteit Brussel), Keune Hans (Belgian Biodiversity Platform, Research In-
stitute for Nature and Forest (INBO)), Tack Jurgen (Research Institute for Nature and Forest (INBO)), Teugros Dominique (KULeuven), Van Belcke Marc (Research Institute for Nature and Forest (INBO)), Van De Putte F. (Research Institute for Nature and Forest (INBO)), Witters Heinrich (Belgian Biodiversity Platform, Royal Belgian Institute of Natural Sciences), Ysebaert Luc (Scientific Institute of Public Health), Tack Jurgen (Research Institute for Nature and Forest (INBO)), Tack Wesley (Ghent University), Van Damme Patrick (Ghent Uni-
versity), Van den Broeke Elke (Flemish Government, Environment, Nature and Energy Depart-
mant), Vanden Bossche (Research Institute for Nature and Forest (INBO)), Van Gils Wim (Natuurpunt), Van Helden Jacques (Université libre de Bruxelles), Van Herpe Ann (Research Institute for Nature and Forest (INBO)), Van Ranst Marc (KULeuven), Vanwambeke Sophie (Université catholique de Louvain), Volckaert Filip (KULeuven), Wittmer Heidi (LVZ, Germany)

This policy brief is available online in English, French and Dutch: http://www.biodiversity.be/health?page/show/18
MORNING (8.30 - 13.00)
9.00 - 11.15 Plenary session
Introduction by Hans Keune (Belgian Biodiversity Platform)
Conor Kretch: “Reducing Risks: Linking Biodiversity and Human Health in Policy and Practice”
Terry Hartig: “Linking Health with Nature Experience: Restoration and Other Pathways” (9.45)
Pim Martens: “Biodiversity and health: friends or foes?” (10.15 - 10.45)
Marc van Ranst: “Zoonotic infections: a changing landscape in Belgium” (10.45 - 11.15)
11.30 - 13.00 First (parallel) workshop sessions
Presentations of discussion papers/ statements
Group discussion: main research challenges

AFTERNOON (14.00 - 17.30)
14.00 - 15.30 Second (parallel) workshop sessions
Group discussion: main research recommendations
15.45 - 17.15 Plenary session
Reporting from the workshop discussions by workshop representatives
Interactive panel discussion: reflecting on the outcomes and on the way forward for this starting community of expertise
Panel members: Workshops representatives
Moderator: Geert De Blust (INBO)
17.15 - 17.30 Closure of the conference
By Jurgen Tack (Director of INBO and member of the Board of Directors of the Belgian Biodiversity Platform)
Appendix 2: Participants list

Participants 2011 Belgian Biodiversity – Public Health Conference

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guy Hendrickx</td>
<td>Avia-GIS</td>
<td>Registered for a specific workshop</td>
</tr>
<tr>
<td>Katrien Tersago</td>
<td>UA</td>
<td></td>
</tr>
<tr>
<td>Veerle Versteirt</td>
<td>ITM</td>
<td></td>
</tr>
<tr>
<td>Etienne Thiery</td>
<td>ULG</td>
<td></td>
</tr>
<tr>
<td>Caroline Zemes</td>
<td>UCL</td>
<td></td>
</tr>
<tr>
<td>Charles Denorne</td>
<td>FPS Health, Food Chain Safety and Environment</td>
<td></td>
</tr>
<tr>
<td>Demen Drewry</td>
<td>Max Planck Institute</td>
<td></td>
</tr>
<tr>
<td>Paul Heyman</td>
<td>Military Hospital</td>
<td></td>
</tr>
<tr>
<td>Christel Cochez</td>
<td>Military Hospital</td>
<td></td>
</tr>
<tr>
<td>Wouter Deconinck</td>
<td>RBINS</td>
<td></td>
</tr>
<tr>
<td>Thibaud Rigot</td>
<td>ULB</td>
<td></td>
</tr>
<tr>
<td>Yine Hayde</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Aiko Gryseput</td>
<td>ULB</td>
<td></td>
</tr>
<tr>
<td>Dieter Declercq</td>
<td>EOS-magazine</td>
<td></td>
</tr>
<tr>
<td>Kristof Baert</td>
<td>INBO</td>
<td></td>
</tr>
<tr>
<td>Sen Li</td>
<td>UCL</td>
<td></td>
</tr>
<tr>
<td>Samia Hammadi</td>
<td>WIV/ISP</td>
<td></td>
</tr>
<tr>
<td>Valerie Opzomer</td>
<td>UCL</td>
<td></td>
</tr>
<tr>
<td>Ana de la Grandière</td>
<td>ULG</td>
<td></td>
</tr>
<tr>
<td>Estelle Balian</td>
<td>Belgian Biodiversity Platform</td>
<td></td>
</tr>
<tr>
<td>Aline De Wever</td>
<td>Belgian Biodiversity Platform</td>
<td></td>
</tr>
<tr>
<td>Sophie Vanwanameke</td>
<td>UCL</td>
<td></td>
</tr>
<tr>
<td>Elin Ducheyne</td>
<td>Avia-GIS</td>
<td></td>
</tr>
<tr>
<td>Marius Gilbert</td>
<td>ULB</td>
<td></td>
</tr>
<tr>
<td>Caroline Michiels</td>
<td>Africa museum</td>
<td></td>
</tr>
<tr>
<td>Denis Eistendem Ndeless</td>
<td>VUB</td>
<td></td>
</tr>
<tr>
<td>Gelda Georgiana Sereia</td>
<td>ULB</td>
<td></td>
</tr>
<tr>
<td>Wesley Tack</td>
<td>Ugent</td>
<td></td>
</tr>
<tr>
<td>Ysualt Navez</td>
<td>FPS Health, Food Chain Safety and Environment</td>
<td></td>
</tr>
<tr>
<td>Filip Voldkaert</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Catharine Linard</td>
<td>ULB</td>
<td></td>
</tr>
<tr>
<td>Steven Verdrengh</td>
<td>Naturpunt</td>
<td></td>
</tr>
<tr>
<td>Sanne Helen</td>
<td>UAstudent</td>
<td></td>
</tr>
<tr>
<td>Ann Van Herzele</td>
<td>INBO</td>
<td></td>
</tr>
<tr>
<td>André Heughebaert</td>
<td>Belgian Biodiversity Platform</td>
<td></td>
</tr>
<tr>
<td>Erik Mathys</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Patrick Van Damme</td>
<td>Ugent</td>
<td></td>
</tr>
<tr>
<td>Wannes Keulemans</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Alain Peeters</td>
<td>RITCA</td>
<td></td>
</tr>
<tr>
<td>Marties Coopman</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Martin Callens</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Lien Reyershove</td>
<td>KUL</td>
<td></td>
</tr>
<tr>
<td>Lucette Flandry</td>
<td>FPS Health, Food Chain Safety and Environment</td>
<td></td>
</tr>
<tr>
<td>Jurgen Tack</td>
<td>INBO</td>
<td></td>
</tr>
<tr>
<td>Greet Tjekoms</td>
<td>VELT</td>
<td></td>
</tr>
<tr>
<td>Francis Turkelboom</td>
<td>INBO</td>
<td></td>
</tr>
<tr>
<td>Melissa Ceuterick</td>
<td>INBO</td>
<td></td>
</tr>
</tbody>
</table>

Vector-borne diseases, diversity and public health

Workshop topics
- **Biodiversity and food**
- **Spatial tools for studying environment and health**
- **Experiencing Nature and the question of health**
- **Public health as an ecosystem service indicator**

Key note speaker
- **Jamila Buziarsist**
 - WIV/ISP

Not attending a specific workshop
- **Marc Van Ranst**
 - KUL
- **Pim Mariens**
 - ICIS
- **Jan Caudron**
 - Photographer

Organisation (Belgian Biodiversity Platform) members not taking part in a specific workshop
- **Dimitri Brossens**
 - Belgian Biodiversity Platform
- **Nicolas Noël**
 - Belgian Biodiversity Platform
- **Julien Cigar**
 - Belgian Biodiversity Platform
- **Geert De Blust**
 - INBO
References

Sala O.E., Meyerson L.A. and Parmesan C. (Eds.) (2009), Biodiversity Change and Human Health: From Ecosystem Services to Spread of Disease, Island Press, Washington

Contact:
Hans KEUNE
h.keune@biodiversity.be
http://www.biodiversity.be