The invasive round goby *Neogobius melanostomus* and tubenose goby *Proterorhinus semilunaris*: two introduction routes into Belgium.

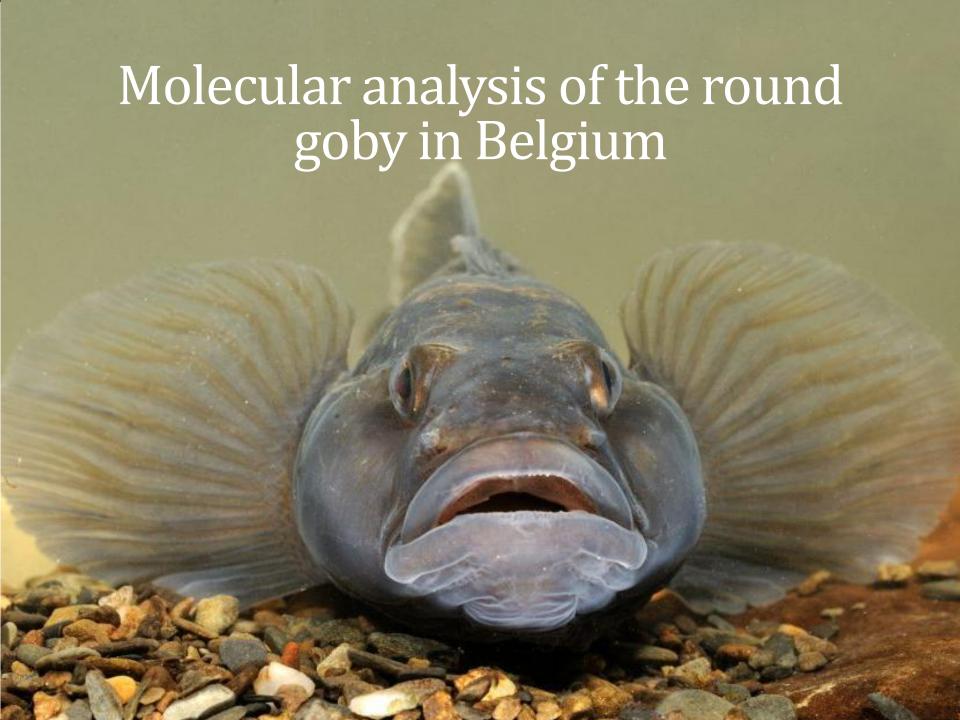
Merlijn Mombaerts, Hugo Verreycken, Filip A.M. Volckaert and Tine Huyse

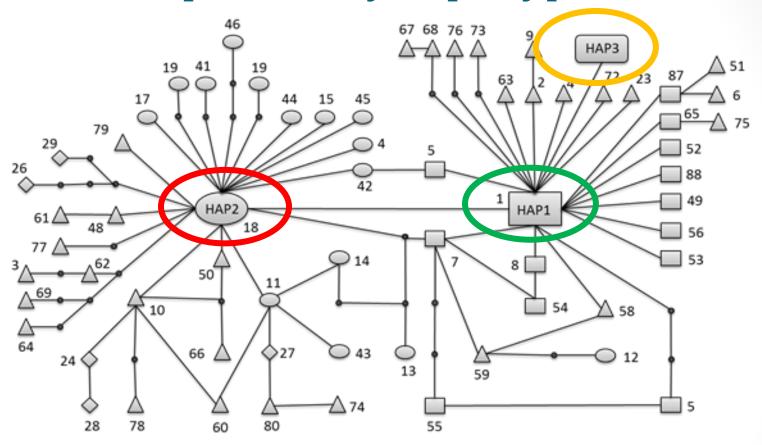
Introduction

- Both species Ponto-Caspian origin
- Widely distributed across Europe and North America
 - Main transport mechanisms:
 - ballast water
 - opening Rhine Main Danube canal in 1992
- Proved to be invasive in introduced regions

- Reconstruction pathways
 - Molecular phylogeographic study
 - Parasitological investigation

Material & Methods

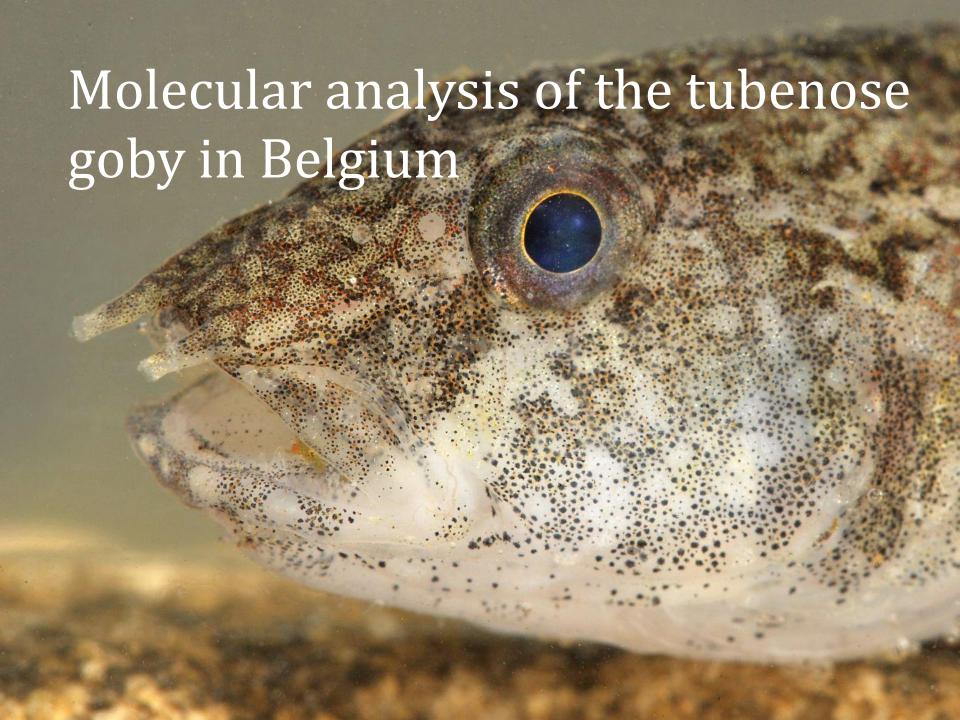

- Electrofishing, fyke nets and angling (autumn 2011 & spring 2012)
 - 44 round gobies, 77 tubenose gobies and 72 fin clips of round goby

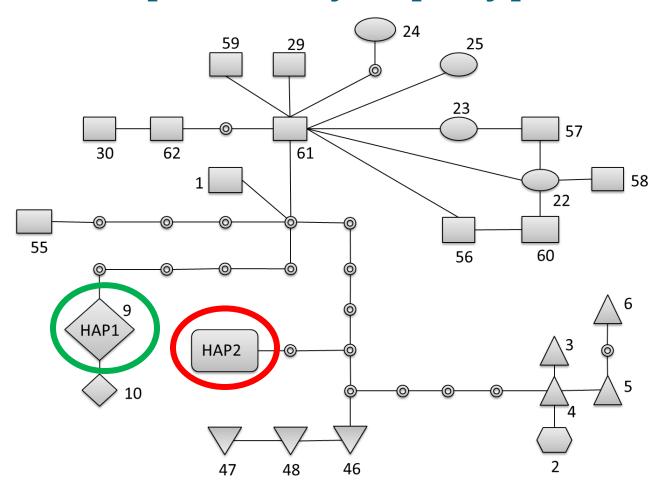

Molecular analysis

- The mitochondrial cytochrome b gene (cyt b)
- Haplotype and nucleotide diversity
- Sequence comparison on Genbank
- Statistical parsimony analysis including Genbank sequences

Parasitological analysis

- Body, fins and gills
- Parasite prevalence, abundance and infection intensity
- Sequencing ITS rDNA fragment & morphological analysis


(■) the Great Lakes and Black Sea drainages, (▲) Black Sea drainage, (●) Sea of Azov drainage, (♦) Volga

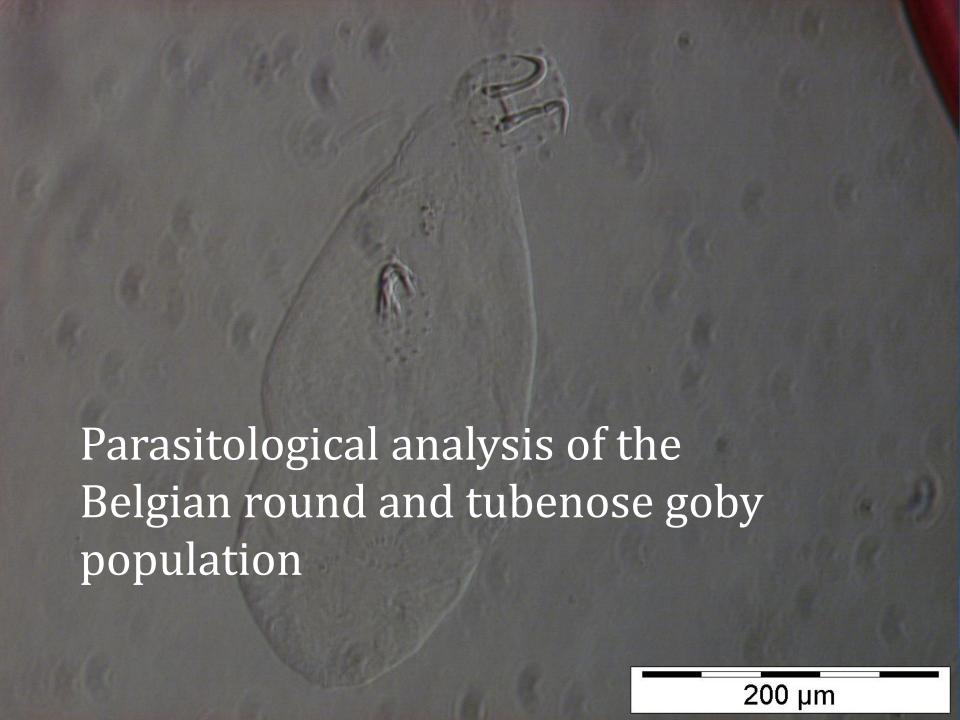

- Hap1 (88 %): identical to ame1 (Genbank), found;
 Most dominant haplotype in Western Europe,
 North America and Ponto-Caspian Region.
- Hap2 (8 %): identical to ame18; groups together with sequencs from Sea of Azov drainages
- Hap3 (2 %): only one sample, no identical sequence known on Genbank

Haplotype (H_d) & nucleotide diversity (P_i)

		N _s	N _h	H _d	P _i (x10 ⁻³)	P _i ' (x10 ³)
Belgium	Albert Canal	22	2	0.173	0.27	0.89
	Canal Gent-Terneuzen	10	3	0.378	0.38	1.18
	Zeeschelde	2	1	0	/	/
	Total	34	3	0.308	0.37	1.18
The Netherlands		11	1	0	/	/

- Canal G-T: all 3 haplotypes; H_d and P_i highest
- the Netherlands: only Hap1
- H_d and P_i moderate in comparison with introduced North-American but lower towards endemic populations
- => Possibly multiple introductions

□ Dniester and tributaries, Ukraine, (•) Odessa bay, Ukraine, (▲) Lake
 St. Clair and Superior, U.S.A., (▼) Simferopol, Ukraine, (•) Dnieper,
 Ukraine, (•) Danube, Serbia, (□) unknown outside Belgium.

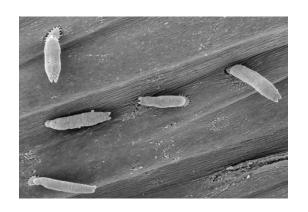

 Hap1 (40/41): identical to Pro9 (Genbank);
 Together with Pro10 found in Danube river in Serbia. Differs at least 6bp from other haplotypes on Genbank.

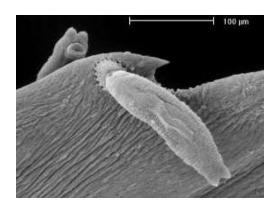
• Hap2 (1/41): only one sample, no identical sequence known on Genbank

Haplotype (H_d) & nucleotide diversity (P_i)

		N _s	N _h	H _d	P _i (.10 ⁻³)	P _i ' (x10³)
Belgium	Canal of Zuid-Willems	20	1	0	/	/
	Mouth Kik -en Ziepbeek	20	2	0.10	2.39	10.20
	Canal of Beverlo	1	1	0	/	/
	Total	41	2	0.049	1.17	10.20

- H_d low in comparison with introduced North-American and endemic populations
- P_i high due to very divergent haplotypes
- H_d 6x lower than Belgian round goby population (0,308.10³)




Prevalence (P%), Abundance (A) and Infection intensity (I) of *Gyrodactylus* sp.

		N _f	N _p	P (%)	Α	1
Round goby	Total	44	3	4.50	0.07	1.5
	Albert Canal	31	0	0	0	/
	Zeeschelde	2	0	0	0	/
	Canal Gent-Terneuzen	11	3	18.18	0.27	1.5
Tubenose goby	Total	73	163	82.19	2.23	2.72
	Mouth Kikbeek	37	92	83,78	2.49	2.97
	Mouth Ziepbeek	7	13	85.71	1.86	2.17
	Canal of Beverlo	1	0	0	0	/
	Canal of Zuid-Willem	28	58	82.14	2.07	2.52

 Prevalence and infection intensity much higher for tubenose gobies

Gyrodactylus proterorhini

- Described on tubenose goby Southern Slovakia
- Introduced in Belgium with goby host
- Direct life cycle (no intermediate host) facilitates invasion of new areas
- Wide host range, spreading to other goby species is possible

Parasite results support our hypothesis of different pathways:

- Round goby:
 - *Gyrodactylus* only infects adults
 - Exchange of ballast water occurs just below water level (pelagic)
- Tubenose goby
 - Natural migration of adult infected fish
 - Less abrupt environmental changes during dispersal

Conclusion

- Round goby:
 - Possible introduction pathway: <u>ballast water transport</u>, possibly from the southern Dnieper River near the port of Kherson (Brown & Stepien, 2009)
- Tubenose goby:
 - Possible introduction pathway: <u>migration</u> through Danube-Main-Rhine Canal, opened in 1992 (Von Landwust, 2006)
- Parasite characteristics can help to evaluate possible introduction routes
- Co-introduction of parasites should be carefully monitored