

federale overheidsdienst VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU

Wildtool

A flexible first-line tool for risk assessment with prioritization of wildlife-borne pathogens

Granted by the Belgian Federal Government : WILDSURV project (RT 07/05) : 01.03.2008 - 01.03.2010

>IAS carry infectious agents (bacteria, viruses, parasites)
>Impact and transmission patterns change when host species
becomes IAS
>DRA = necessary part of IAS risk assessment

WildtoolHarmoniaRA + prioritizeRA + prioritize(pathogenic)(invasive)infectious agentsanimal species

Objectives

→ Flexible ⁽¹⁾, "First line" ⁽²⁾ tool for DRA of wildlife-borne pathogens

(1) - different fields of interest (public health, livestock breeding, companion animal medicine, conservation, game management)

→ different **target groups**: man, production animals,

companion animals, game, threatened species

- applicable at **regional or national** levels (B)
- scarcity of data
- relative importance of criteria for different users
- regular updates with most recent information
- (2) broad scope of pathogens : "horizon scanning"
 - identify pathogens to be considered for in depth risk analysis

Methods / Principles

Risk analysis for import of diseases (international trade): OIE: Terrestrial Animal Health Code :

- Hazard identification
- Risk assessment
 - Release assessment
 - Exposure assessment
 - □ Consequence assesment
 - Risk estimation

Methods / Hazard identification

- Basis : OIE list of notifiable wildlife diseases (version 2008) - "pathogens" instead of "diseases" -
- Not restrictive: any other pathogen can be included IF information appears about a possible release or exposure in Belgium

Methods / Criteria

-> Need for criteria (according to the elements of a standard OIE risk assessment) to compare pathogens

-> Preliminary literature search to identify the kind of information currently available for most pathogens

-> Criteria choice : main criteria + subcriteria

Methods / Data Collection

- **Storage of literature data (expressed as scores)** in database according to six main criteria

- **Review** of pathogen-specific scores **by experts**

Elements of risk evaluation, main criteria and data sources

Corresponding part of risk evaluation :	Main criteria (Data sources)
Release assessment	Host presence (1)
Release assessment	Vector presence (2)
Release assessment	Occurrence in wildlife (1), (3)
Release + Exposure assessment	Transmission (1) + (2)
Exposure assessment	Occurrence in targets (1), (3)
Consequence assessment	Impact (1) + (2)

- (1) Literature
- (2) Expert consultation
- (3) National and international reports

Main criteria and kinds of scores

Main criteria	Scores					
Host presence	Y / N	Y / N Host presence subcriteria scores (numerical : 1-100)				
Vector presence	Y / N	Vector presence subcriteria scores (numerical : 1-100)				
Occurrence in wildlife	Y / N Occurence in wildlife subcriteria scores (numerical : 1-100)					
Transmission	Transmission subcriteria scores (H/M/L/NE) Y / N Impact subcriteria scores (H/M/L/NE)					
Occurrence in targets						
Impact						

Subcriteria

Impact						
Case fatality (man, production animals, companion animals)	NE	L	Μ	Н		U
Morbidity (all target groups)	NE	L	Μ	Η		U
Mortality (all target groups)	NE	L	Μ	Η		U
Impact on life comfort (all target groups)	NE	L	Μ	Η		U
Risk of population decrease (game, threatened spp., pest spp)	NE	L	Μ	Η		U
Economic impact (all target groups)	NE	L	Μ	Η		U
Notifiable disease (national, OIE)	N				Y	
Probability of eradication achievement (all target groups)		Η	Μ	L	NE	U
Treatment possibilities (all target groups)		Н	Μ	L	NE	U
Vaccination efficiency (all target groups)		Η	Μ	L	NE	U
Risk concerning use as a weapon in bioterrorism	NE	L	Μ	Н		U
Transmission characteristics						
Contagiousness and/or efficiency of transmission by vectors		L	Μ	Η		U
Genetic stability		Η	Μ	L		U
Importance of occupational / circumstantial exposure		Η	Μ	L		U
Risk of introduction	NE	L	Μ	Η	End	U
Probability of transmission from wildlife to "target group"		L	Μ	Η		U
Transmission efficiency between different wildlife species	NE	L	Μ	Η		U
Risk of secundary transmission (intra- or extra- target group)	NE	L	Μ	Η		U
Transmission influenced by extrinsic factors (environment, anthropogenic)	NE	L	Μ	Η		U
Resistance: in environment, to desinfectants		L	Μ	Н		U
Numerical score	1	2	3	4	5	1/2/3/4/5

Subcriteria

Host presence				
Number of months present in "region" : 1-12	(1/12 to 12/12) x 100			
Migrating : Y or N	100 or 1			
% UTM squares occupied in "region" :	1 - 100			
Fraction of total European population in "region"	n x 100 / total Europ. population			
Increasing trend in "region" : Y or N	100 or 1			
Vector presence (only if vector-borne pathogen)				
Vector presence in Belgium : Y or N	100 or 0			
Vector present in "region" : Y or N	100 or 0			
Occurrence in wildlife				
Number of European countries in which reported in wildlife	n x 100 / total Europ. countries			
Number of neigbouring countries (incl. Belgium) in which reported in wildife	n x 100 / total neighb. countries			
Most recent year of reporting in wildlife anywhere in Europe: subtract from current year: 0-1 / 2-5 / 6-10 / 11-20 / 20 -100 years ago	100 / 80 / 60 / 40 / 20			
Most recent year of reporting in neighbouring countries (incl. Belgium) in wildlife: subtract from current year: 0-1 / 2-5 / 6-10 / 11-20 / 20-100 years ago	100 / 80 / 60 / 40 / 20			

Methods / Choice of parameters:

User chooses :

- target group
- region
- weights for pathogen-specific subcriteria
 → relative importance of the subcriteria
 → differentiation between the scores

Methods / Data processing :

- 1.- algoritm (Y/N scores)
- 2.- translation of the qualitative scores (H/M/L/NE) to numerical values (for the "impact" and "transmission" subcriteria)
- *3.- multiplication of the numerical scores with the weights assigned to the subcriteria by the end user*
- 4.- sum of the products = end-score per pathogen
 ("normalised": expressed as a % of the maximal possible
 score for that pathogen within the chosen target group)
- 5.- ranking of pathogens (highest score first)

Methods / Algoritm

Methods / Two level ranking

<u>Why</u> is refinement of the "rough" 1st level Y/N scores necessary ?

- if "host presence" is very limited / very important
- if "occurrence in wildlife" in Europe is very limited / very important
- → Standard procedure = 1st level ranking ("comprehensiveness")

→ Refinement = 2nd level ranking (focus on release assessment)
 ←→ Scarcity of "Occurrence in wildlife" data for many pathogens !

Processing of the subcriteria scores : 1st and 2nd L (per PA)

Impact						
Case fatality (man, production animals, companion animals)	NE	L	Μ	Η		U
Morbidity (all target groups)	NE	L	Μ	Η		U
Mortality (all target groups)	NE	L	Μ	Η		U
Impact on life comfort (all target groups)	NE	L	Μ	Η		U
Risk of population decrease (game, threatened spp., pest spp)	NE	L	Μ	Η		U
Economic impact (all target groups)	NE	L	Μ	Η		U
Notifiable disease (national, OIE)	N				Y	
Probability of eradication achievement (all target groups)		Η	Μ	L	NE	U
Treatment possibilities (all target groups)		Η	Μ	L	NE	U
Vaccination efficiency (all target groups)		Η	Μ	L	NE	U
Risk concerning use as a weapon in bioterrorism	NE	L	Μ	Η		U
Transmission characteristics						
Contagiousness and/or efficiency of transmission by vectors		L	Μ	Η		U
Genetic stability		Η	Μ	L		U
Importance of occupational / circumstantial exposure		Η	Μ	L		U
Risk of introduction	NE	L	Μ	Η	End	U
Probability of transmission from wildlife to "target group"		L	Μ	Η		U
Transmission efficiency between different wildlife species	NE	L	Μ	Η		U
Risk of secundary transmission (intra- or extra- target group)	NE	L	Μ	Η		U
Transmission influenced by extrinsic factors (environment, anthropogenic)	NE	L	Μ	Η		U
Resistance: in environment, to desinfectants		L	Μ	Η		U
Numerical score	1	2	3	4	5	1/2/3/4/5

Processing of the subcriteria scores : 2nd L (per PA)

Host presence					
Number of months present in "region" : 1-12	(1/12 to 12/12) x 100				
Migrating : Y or N	100 or 1				
% UTM squares occupied in "region" :	1 - 100				
Fraction of total European population in "region"	n x 100 / total Europ. population				
Increasing trend in "region" : Y or N	100 or 1				
Vector presence (only if vector-borne pathogen)					
Vector presence in Belgium : Y or N	100 or 0				
Vector present in "region" : Y or N	100 or 0				
Occurrence in wildlife					
Number of European countries in which reported in wildlife	n x 100 / total Europ. countries				
Number of neigbouring countries (incl. Belgium) in which reported in wildife	n x 100 / total neighb. countries				
Most recent year of reporting in wildlife anywhere in Europe: subtract from current year: 0-1 / 2-5 / 6-10 / 11-20 / 20 -100 years ago	100 / 80 / 60 / 40 / 20				
Most recent year of reporting in neighbouring countries (incl. Belgium) in wildlife: subtract from current year: 0-1 / 2-5 / 6-10 / 11-20 / 20-100 years ago	100 / 80 / 60 / 40 / 20				

Methods / Unknown scores

"Unknown" subcriteria scores : - no information in the literature - unknown by experts

An "unknown" score is given the median numerical value "3"

→ the subcriterion concerned + its weight are conserved (≠ 0)
 => consistent comparison between pathogens
 → no influence on scoring result

Methods / Uncertainty estimation

Uncertainty = % of "unknown" subcriteria (2nd L : uncertainty % averaged with 1st L uncertainty %)

Interpretation

→ Check 2nd level ranking order for those pathogens ranking high in 1st level :

- high rank conserved: important for surveillance !
- lower ranking order: release less important then for higher ranked pathogens
- absent in 2nd level = no refined data found

1st Level : Production animals / Flanders

1	Eastern equine encephalitis virus_	44.43	19.05
2	West Nile virus	44.24	9.52
3	Chlamydophila psittaci_	43.71	4.76
4	Bluetongue virus	43.29	14.29
5	Rinderpest morbillivirus_	42.67	4.76
6	Avian paramyxovirus 1 (Newcastle disease) 💁	42.43	9.52
7	Porcine circovirus	42.43	4.76
8	Cryptosporidium parvum_	42.38	23.81
9	Salmonella enterica subsp. Enterica_	42.38	14.29
10	Rabbit haemorrhagic disease virus 🞦	42.33	4.76
11	Myxomatosis virus_	42.24	9.52
12	Avian influenza HP strains_	42.05	0
13	African swine fever virus	41.81	14.29
14	Giardia duodenalis (G. intestinalis, G. lamblia)	41.67	19.05
15	Pasteurella multocida (Fowl cholera) 🎦	41.48	14.29

2nd Level : Production animals / Flanders

1	Chlamydophila psittaci_99	77.33	2.38
2	Pasteurella multocida (Fowl cholera)	74.26	7.14
3	Avian influenza LP strains	72.71	7.14
4	Duck virus hepatitis_	71.9	16.67
5	Mycobacterium microti_	70.45	19.05
6	Salmonella enterica subsp. Enterica 🎦	69.69	7.14
7	Sarcocystis spp. (others)	69.35	21.43
8	Leptospira_	69.29	4.76
9	Erysipelothrix rhusiopathiae	68.54	15
10	Avian influenza HP strains_	67.89	0
11	Mycobacterium avium subsp. Paratuberculosis_👥	67.78	2.38
12	Anaplasma phagocytophilum_	67.01	7.14
13	Pseudamphistomum truncatum_	66.38	28.57
14	Coxiella burnetii_	66.18	11.9
15	Echinococcosis (E.multilocularis and E.granulosus) 🤷	66.15	15

Current version = prototype

Future points of attention :

- → Continued update literature data !
 - = «Occurrences»
 - = «Host Presence»
- \rightarrow Refine processing
- → Operated by a team: improvements, data collection, queries

Integration with Harmonia ?

YES , BUT : different objectives / procedures :
→ FIRST determine exactly the «common objective»:
which kind of information do we want to obtain concretely ?
THEN work out practicalities
→ DRA separately (cf conclusions workshop september):

Publication :

Wildtool, a flexible first-line risk assesment system for wildlife-borne pathogens

Tavernier P., Dewulf J., Roelandt S., Roels S (2011) European Journal of Wildlife Research 57(5), 1065-1075

Website :

http://wildtool.var.fgov.beLog in: guestPassword : gast

Thank you for your attention ! ...

With special thanks to :

- The Federal Public Service of Health, Food Chain Safety and Environment (Dr.L.Lengelé ⁺, Dr.D.Vandekerchove, Dr.C.Dubois)
- P.Heyman, Prof.Dr.J.Dewulf, Dr.R.Dedeken, Dr.M.Madder, Prof. B.Losson, Prof E. Claerebout and the WILDSURV steering and supervisory committee members
- Prof.M.Artois, Dr.E.Petit (ENV Lyon,F); Dr.J.van der Giessen (EMZOO, RIVM, De Bilt, NL); A. Frost (DEFRA, UK)
- Steven Depryck, Ywan Dessers, Rik Dessers (FREIMS) (WILDTOOL programmers)
- Koen Devos, Stijn Vanacker (INBO/ Bird section); Gerard Troost, Kees Koffijberg (SOVON / Trektellen.NL); Marc Herremans,Goedele Verbeylen (Natuurpunt.studie)
- Lic. Coralie Renard and Jessica De Sloovere (VAR/CODA/CERVA) who helped intensively to enter data into WILDTOOL
- Everybody else who cooperated constructively to the WILDSURV project

